Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-29T11:02:41.895Z Has data issue: false hasContentIssue false

Palynological Evidence of Climatic and Oceanographic Changes in the North Sea during the Last Deglaciation

Published online by Cambridge University Press:  20 January 2017

André Rochon
Affiliation:
GÉOTOP, Université du Québec à Montréal, C.P. 8888, Montréal, Canada, H3C 3P8
Anne de Vernal
Affiliation:
GÉOTOP, Université du Québec à Montréal, C.P. 8888, Montréal, Canada, H3C 3P8
Hans-Petter Sejrup
Affiliation:
Geologiske Institute, University of Bergen, Allegaten 41, N-5007, Bergen, Norway
Haflidi Haflidason
Affiliation:
Geologiske Institute, University of Bergen, Allegaten 41, N-5007, Bergen, Norway

Abstract

Palynological analyses performed on cores from the Norwegian Channel (Troll 8903) led to reconstruction of the late-glacial variations in sea-surface conditions using dinoflagellate cyst data and permitted direct correlation with the vegetation history of northwestern Europe derived from pollen assemblages. By ∼15,000 yr B.P., ice rapidly receded from the Norwegian shelf and relatively warm summer conditions prevailed in surface waters. A first late-glacial cooling marked by extensive seasonal sea–ice cover is dated at ca. 13,600–13,000 14C yr B.P., which coincides with the Oldest Dryas interval. During the Bølling–Allerød interval, a rise in sea-surface temperature both in February (up to 3°C) and August (up to 15°C) led to the establishment of ice-free conditions in the northern North Sea, while pollen data reveal a densification of the vegetation cover. The beginning of the Younger Dryas interval is marked by an increase in nonarboreal pollen input indicative of the opening of the forest vegetation cover, concomitant with a cooling of surface waters during winter and development of sea–ice cover. However, sea-surface conditions remained relatively warm in summer until about 10,300 yr B.P., when extremely cold conditions and extensive sea–ice cover developed (up to 7 months/yr). Improving conditions are recorded in surface waters by ∼10,100 yr B.P., a few hundred years before the development of forest cover onshore, as shown by the pollen record. Such a discrepancy between marine and terrestrial indicators at the end of Younger Dryas time suggests a delayed response of the vegetation to regional climate warming.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., Meese, D.A., Shuman, C.A., Gow, A.J., Taylor, K.C., Grootes, P.M., White, J.W.C., Ram, M., Waddington, E.D., Mayewski, P.A., Zielinski, G.A., 1993. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature. 362 527529.CrossRefGoogle Scholar
Alm, T., Willassen, E., 1993. Late Weichselian chironomidae (Diptera) stratigraphy of lake Nedre Aerasvatn, Andoya, northern Norway. Hydrobiologia. 264 2132.Google Scholar
Amman, B., Lotter, A.F., 1989. Late-glacial radiocarbon and palynostratigraphy on the Swiss Plateau. Boreas. 18 109126.CrossRefGoogle Scholar
Andersen, E.S., Østmo, S.R., Forsberg, C.F., Lehman, S.J., 1995. Late- and post-glacial depositional environments in the Norwegian Trench, northern North Sea. Boreas. 24 4764.Google Scholar
Atkinson, T.C., Briffa, K.R., Coope, G.R., 1987. Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. Nature. 325 587592.Google Scholar
Bard, E., Arnold, M., Mangerud, J., Paterne, M., Labeyrie, L., Duprat, J., Mélières, M.-A., Sønstegaard, E., Duplessy, J.-C., 1994. The North Atlantic atmosphere-sea surface14 . Earth and Planetary Science Letters. 126 275287.Google Scholar
Birks, H.H., Gulliksen, S., Haflidason, H., Mangerud, J., Possnert, G., 1996. New radiocarbon dates for the Vedde Ash and the Saksunarvatn Ash from western Norway. Quaternary Research. 45 119127.CrossRefGoogle Scholar
Birks, H.H., Paus, A., Svendsen, J.I., Alm, T., Mangerud, J., Landvik, J.Y., 1994. Late Weichselian environmental change in Norway, including Svalbard. Journal of Quaternary Science. 9 133145.Google Scholar
Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., Ivy, S., 1992. Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period. Nature. 360 245249.CrossRefGoogle Scholar
de Vernal, A, 1986, Analyses Palynologiques et Isotopiques de Sédiments de la Mer du Labrador et de la Baie de Baffin: Éléments d'une Climatostratigraphie du Quaternaire Supérieur dans l'est du Canada, Université de Montréal.Google Scholar
de Vernal, A., Giroux, L., 1991. Distribution of organic walled microfossils in recent sediments from the Estuary and Gulf of St. Lawrence: Some aspects of the organic matter fluxes. Canadian Journal of Fisheries and Aquatic Sciences. 113 189199.Google Scholar
de Vernal, A., Goyette, C., Rodrigues, C.G., 1989. Contribution palynostratigraphique (dinokystes, pollen et spores) à la connaissance de la mer de Champlain: coupe de St-Césaire, Québec. Canadian Journal of Earth Sciences. 26 24502464.CrossRefGoogle Scholar
de Vernal, A., Larouche, A., Richard, P.J.H., 1987. Evaluation of palynomorph concentrations: Do the aliquot and the marker-grain methods yield comparable results. Pollen et Spores. XXIX 291304.Google Scholar
de Vernal, A., Guiot, J., Turon, J-L., 1993. Late and postglacial paleoenvironments of the Gulf of St. Lawrence: Marine and terrestrial palynological evidence. Géographie Physique et Quaternaire. 47 167180.CrossRefGoogle Scholar
de Vernal, A., Turon, J-L., Guiot, J., 1994. Dinoflagellate cyst distribution in high-latitude marine environments and quantitative reconstruction of sea-surface salinity, temperature, and seasonality. Canadian Journal of Earth Sciences. 31 4862.Google Scholar
Fægri, K., Iversen, J., 1989. Textbook of Pollen Analysis. Wiley, New York. Google Scholar
Guiot, J., 1987. Late Quaternary climatic change in France estimated from multivariate pollen time series. Quaternary Research. 28 100118.CrossRefGoogle Scholar
Guiot, J., 1990. Methods and programs of statistics for paleoclimatology and paleoecology. Guiot, J., Labeyrie, L., Quantification des Changements Climatiques: Méthode et Programmes. Institut National des Sciences de l'Univers (INSU-France).Google Scholar
Haflidason, H., Sejrup, H.P., Klitgaard Kristensen, D.K., Johnsen, S., 1995. Coupled response of the late glacial climatic shifts of northwest Europe reflected in Greenland ice cores: Evidence from the northern North Sea. Geology. 23 10591062.Google Scholar
Heusser, L., 1983. Pollen distribution in the western north Atlantic Ocean. Marine Micropaleontology. 8 7788.Google Scholar
Jones, G.A., Keigwin, L.D., 1988. Evidence from Fram Strait (78°N) for early deglaciation. Nature. 336 5659.Google Scholar
Koç, N., Jansen, E., Haflidason, H., 1993. Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian Seas through the last 14 ka based on diatoms. Quaternary Science Reviews. 12 115140.CrossRefGoogle Scholar
Lehman, S.J., Keigwin, L.D., 1992. Sudden changes in North Atlantic circulation during the last deglaciation. Nature. 356 757762.CrossRefGoogle Scholar
Mangerud, J., 1970. Late Weichselian vegetation and ice-front oscillations in the Bergen district, western Norway. Norsk Geologisk Tidsskrift. 24 121148.Google Scholar
Mangerud, J., Andersen, S.T., Berglund, B.E., Donner, J.J., 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas. 3 109128.Google Scholar
Mangerud, J., Gulliksen, S., 1975. Apparent radiocarbon ages of recent marine shells from Norway, Spitsbergen and Arctic Canada. Quaternary Research. 5 263273.Google Scholar
Markham, W.E., 1980. Atlas des Glaces, Littoral de l'est Canadien. Environnement CanadaAtmospheric Environment Service, Ottawa. Google Scholar
Markham, W.E., 1988. Ice Atlas. Hudson Bay and Approaches. Environnement CanadaAtmospheric Environment Service, Ottawa. Google Scholar
Matthews, J., 1969. The assessment of a method for the determination of absolute pollen frequencies. New Phytologist. 68 161166.CrossRefGoogle Scholar
Matthiessen, J., 1995. Distribution patterns of dinoflagellate cysts and other organic-walled microfossils in recent Norwegian–Greenland Sea sediments. Marine Micropaleontology. 24 307334.Google Scholar
Mudie, P.J., 1982. Pollen distribution in recent marine sediments, Eastern Canada. Canadian Journal of Earth Sciences. 19 729747.Google Scholar
Mudie, P.J., 1992. Circum-Arctic Quaternary and Neogene marine palynofloras: Paleoecology and statistical analysis. Head, M.J., Wrenn, J.H., Neogene and Quaternary dinoflagellate cysts and acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas, 347390.Google Scholar
1994. World Ocean Atlas. National Oceanographic and Atmospheric AdministrationCD-ROM data set, Washington. Google Scholar
Nordberg, K., 1991. Oceanography in the Kattegat and Skagerrak over the past 8000 years. Paleoceanography. 6 461484.CrossRefGoogle Scholar
Norddahl, H., Haflidason, H., 1992. The Skogar Tephra, a Younger Dryas marker in North Iceland. Boreas. 21 2341.Google Scholar
Paus, A., 1988. Late Weichselian vegetation, climate, and floral migration at Sandvikvatn, North Rogaland, southwestern Norway. Boreas. 17 113139.Google Scholar
Paus, A., 1989. Late Weichselian vegetation, climate, and floral migration at Liastemmen, North Rogaland, south-western Norway. Journal of Quaternary Science. 4 224242.CrossRefGoogle Scholar
Paus, A., 1989. Late Weichselian vegetation, climate, and floral migration at Eigebakken, South Rogaland, western Norway. Review of Palaeobotany and Palynology. 61 177203.Google Scholar
Paus, A., 1990. Late Weichselian vegetation, climate, and floral migration at Utsira, North Rogaland, southwestern Norway. Norsk Geologisk Tidsskrift. 70 135152.Google Scholar
Paus, A., 1995. The late Weichselian and early Holocene history of tree birch in South Norway and the Bølling Betula . Review of Palaeobotany and Palynology. 85 243262.Google Scholar
Pons, A., Reille, M., 1988. The Holocene- and upper Pleistocene pollen record from Padul (Granada, Spain); a new study. Palaeogeography, Palaeoclimatology, Palaeoecology. 66 243263.CrossRefGoogle Scholar
Rochon, A., de Vernal, A., 1994. Palynomorph distribution in Recent sediments from the Labrador Sea. Canadian Journal of Earth Sciences. 31 115127.CrossRefGoogle Scholar
Rochon, A, 1997, Distribution des Kystes de Dinoflagellés dans les Sédiments Récents et Changements Environnementaux le Long des Marges sud Scandinaves au Cours du Dernier Cycle Climatique, Université du Québec à Montréal.Google Scholar
Sejrup, H.P., Haflidason, H., Aarseth, I., King, E., Forsberg, C.F., Lond, D., Rokoengen, K., 1994. Late Weichselian glaciation history or the northern North Sea. Boreas. 23 113.CrossRefGoogle Scholar
Turon, J-L, 1984, Le Palynoplancton dans l'Environnement Actuel de l'Atlantique Nord Oriental. Évolution Climatique et Hydrologique Depuis le Dernier Maximum Glaciaire. Université de Bordeaux.Google Scholar
Walker, M.J.C., Bohncke, S.J.P., Coope, G.R., O'Connell, M., Usinger, H., Verbruggen, C., 1994. The Devensian/Weichselian Late-glacial in northwest Europe (Ireland, Britain, north Belgium, The Netherlands, northwest Germany). Journal of Quaternary Science. 9 109118.Google Scholar
Wohlfarth, B., 1996. The chronology of the last termination: A review of radiocarbon-dated, high resolution terrestrial stratigraphies. Quaternary Science Reviews. 15 267284.CrossRefGoogle Scholar
Zielinski, G.A., Mayewski, P.A., Meeker, L.D., Whitlow, S., Twickler, M.S., 1996. A 110,000-year record of explosive volcanism from the GISP2 (Greenland) ice core. Quaternary Research. 45 109118.CrossRefGoogle Scholar