Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T21:19:01.448Z Has data issue: false hasContentIssue false

A Paleo-Lake and wetland paleoecology associated with human use of the distal Old River Bed Delta at the Pleistocene-Holocene transition in the Bonneville Basin, Utah, USA

Published online by Cambridge University Press:  10 September 2021

Manuel R. Palacios-Fest*
Affiliation:
Terra Nostra Earth Sciences Research, LLC; P.O. Box 37195, Tucson, Arizona85740-7195, USA
Daron Duke
Affiliation:
Far Western Anthropological Research Group, Inc.; 1180 Center Point Drive, Suite 100 Henderson, NV89074, USA
D. Craig Young
Affiliation:
Far Western Anthropological Research Group, Inc.; 3656 Research Way, Suite 32. Carson City, NV89706
Jason D. Kirk
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ85721, USA
Charles G. Oviatt
Affiliation:
Department of Geology, Thompson Hall, Kansas State University, Manhattan, KS66506, USA
*
*Corresponding author e-mail address:[email protected]

Abstract

Mollusk and ostracode assemblages from the distal Old River Bed delta (ORBD) contribute to our understanding of the Lake Bonneville basin Pleistocene-Holocene transition (PHT) wetland and human presence on the ORBD (ca. 13,000–7500 cal yr BP). Located on U.S. Air Force-managed lands of the Great Salt Lake Desert (GSLD) in western Utah, USA, the area provided 30 samples from 12 localities. The biological assemblages and the potential water sources using 87Sr/86Sr analyses showed wetland expansion and contraction across the PHT, including the Younger-Dryas Chronozone (YDC). The record reflects cold, freshwater conditions, which is uncharacteristic of the Great Salt Lake Desert, after recession of Lake Bonneville. Lymnaea stagnalis jugularis, Cytherissa lacustris, and possibly Candona sp. cf. C. adunca, an endemic and extinct species only reported from Lake Bonneville, suggest cold-water environments. Between 13,000–12,400 cal yr BP, a shallow lake formed, referred to as the Old River Bed delta lake, fed by Lake Gunnison, as shown by 87Sr/86Sr ratios of 0.71024–0.71063 in mollusk fossils collected at the ORBD, characteristic of the Sevier basin. These findings add paleoenvironmental context to the long-term use of the ORBD by humans in constantly changing wetland habitats between 13,000–9500 cal yr BP.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, K.R., Smith, S.J., Palacios-Fest, M.R., 2002. Pollen and micro-invertebrates from modern earthen canals and other fluvial environments along the Middle Gila River, Central Arizona: implications for archaeological interpretation. Gila River Indian Community, Anthropological Research Papers No. 1, Sacaton, Arizona, 76 pp.Google Scholar
Arkush, B.S., Pitblado, B.L., 2000. Paleoarchaic surface assemblages in the Great Salt Lake Desert, northwestern Utah. Journal of California and Great Basin Anthropology 22, 1242.Google Scholar
Beck, C., Jones, G.T., 1997. The terminal Pleistocene–early Holocene archaeology of the Great Basin. Journal of World Prehistory 11, 161236.CrossRefGoogle Scholar
Beck, C., Jones, G.T., 2015. Lithic analysis. In: Madsen, D.B., Schmitt, D.N., Page, D. (Eds.), The Paleoarchaic Occupation of the Old River Bed Delta. The University of Utah Press, Salt Lake City, Utah, pp. 97208.Google Scholar
Belis, C.A., Lami, A., Guilizzoni, P., Ariztegui, D., Geiger, W., 2008. The late Pleistocene ostracod record of the crater lake sediments from Lago di Albano (Central Italy): changes in trophic status, water level and climate. Journal of Paleolimnology 21, 151169.CrossRefGoogle Scholar
Benson, L.V., Lund, S.P., Smoot, J.P., Rhode, D.E., Spencer, R.J., Verosub, K.L., Louderback, L.A., Johnson, C.A., Rye, R.O., Negrini, R.M., 2011. The rise and fall of Lake Bonneville between 45 and 10.5 ka. Quaternary International 235, 5769.CrossRefGoogle Scholar
Bradbury, C.D., Jewell, P.W., Fernandez, D.P., Lerback, J.C., DeGraffenried, J.V., Petersen, E.U., 2020. Water provenance at the Old River Bed inland delta and ground water flow from the Sevier basin of Central Utah during the Pleistocene-Holocene transition. Quaternary Research 99, 114127. https://doi.org/10.1017/qua.2020.66.CrossRefGoogle Scholar
Bryan, A.L., 1979. Smith Creek Cave. In: Touhy, D.L., Randall, D.R. (Eds.), The Archaeology of Smith Creek Canyon, Eastern Nevada. Nevada State Museum Anthropological Papers 17, Carson City, pp. 162253.Google Scholar
Bunbury, J., Gajewski, K., 2009. Biogeography of freshwater ostracodes in the Canadian Arctic Archipelago. Arctic 62, 324332.CrossRefGoogle Scholar
Byerly, R., Duke, D., Young, D.C., Rice, S.K., 2018. Cultural Resources Inventory of 6,575 Acres of the West Delta of the Old River Bed, Utah Test and Training Range, Tooele County, Utah. Contract Report, Far Western Anthropological Research Group, Inc., Henderson, Nevada.Google Scholar
Carling, G.T., Fernandez, D.P., Rey, K.A., Hale, C.A., Goodman, M.M., Nelson, S.T., 2020. Using strontium isotopes to trace dust from a drying Great Salt Lake to adjacent urban areas and mountain snowpack. Environmental Research Letters 15, 114035. https://doi.org/10.1088/1748-9326/abbfc4.CrossRefGoogle Scholar
Charlier, B.L., Ginibre, C., Morgan, D., Nowell, G.M., Pearson, D.G., Davidson, J.P., Ottley, C.J., 2006. Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications. Chemical Geology 232, 114133.CrossRefGoogle Scholar
Cheng, H., Zhang, H., Spötl, C., Baker, J., Sinha, A., Li, H., Bartolomé, M., et al. , 2020. Timing and structure of the Younger Dryas event and its underlying climate dynamics. Proceedings of the National Academy of Sciences 117, 2340823417.CrossRefGoogle ScholarPubMed
Clark, D.L., Oviatt, C.G., Page, D., 2016, Geologic map of Dugway Proving Ground and adjacent areas, Tooele County, Utah, scale 1:75,000. Utah Geological Survey Map 274DM, GIS data, 31 p. https://ugspub.nr.utah.gov/publications/maps/m-274/m-274txt.pdf.Google Scholar
Clark, D.L., Oviatt, C.G., Hardwick, C.L, Page, D., 2020. Interim geologic map of the Bonneville Salt Flats and east part of the Wendover 30′ x 60′ quadrangles, Tooele County, Utah, Year 3, scale 1:62,500. Utah Geological Survey Open-File Report 731, 30 pp. https://doi.org/10.34191/OFR-731.CrossRefGoogle Scholar
Clarke, A.H., 1981. The Freshwater Mollusks of Canada. National Museums of Canada, Ottawa.CrossRefGoogle Scholar
Currey, D.R., 1990. Quaternary paleolakes in the evolution of semidesert basins, with special emphasis on Lake Bonneville and the Great Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 76, 189214.CrossRefGoogle Scholar
Curry, B.B., Baker, R.G., 2000. Paleohydrology, vegetation, and climate since the late Illinois Episode (~130 ka) in south-central Illinois. Palaeogeography, Palaeoclimatology, Palaeoecology 155, 5981.CrossRefGoogle Scholar
Curry, B.B., Delorme, L.D., Smith, A.J., Palmer, D.E., Stiff, B.J., 2012. The biogeography, and physicochemical characteristics of aquatic habitats of freshwater ostracodes in Canada and the United States. In: Horne, D., Holmes, J.A., Rodriguez-Lazaro, J., Viehberg, F.A. (Eds.), Ostracoda as Proxies for Quaternary Climate Change. Developments in Quaternary Science 17, 85115. https://doi.org/10.1016/B978-0-444-53636-5.00006-8.Google Scholar
Cushing, J., Wenner, A.M., Noble, E., Daily, M., 1986. A groundwater hypothesis for the origin of “fire areas” on the Northern Channel Islands, California. Quaternary Research 26, 207217.CrossRefGoogle Scholar
Danielopol, D.L., 1990. On the interest of the “Cytherissa” project and the present state of researches. In: Danielopol, D.L., Carbonel, P., Colin, J.P. (Eds.), Cytherissa the Drosophila of Paleolimnology. Bulletin de l'Institut de Geologie du Bassin d'Aquitaine 47, 1526.Google Scholar
Delorme, L.D., 1969. Ostracodes as Quaternary paleoecological indicators. Canadian Journal of Earth Sciences 6, 14711476.CrossRefGoogle Scholar
Delorme, L.D., 1970. Freshwater ostracodes of Canada. Part III. Family Candonidae. Canadian Journal of Zoology 48, 10991127.CrossRefGoogle Scholar
Delorme, L.D., 1971. Freshwater ostracodes of Canada. Part V. Families Limnocytheridae, Loxoconchidae. Canadian Journal of Zoology 49, 4364.CrossRefGoogle Scholar
Delorme, L.D., Zoltai, S.C., 1984 Distribution of Arctic ostracode fauna in space and time. Quaternary Research 21, 6573.CrossRefGoogle Scholar
Dillon, R.T. Jr., 2000. The Ecology of Freshwater Molluscs. Cambridge University Press, New York.CrossRefGoogle Scholar
Dillon, R.T. Jr., Stewart, T.W., 2003. The Freshwater Gastropods of South Carolina. Electronic document: http://www.cofc.edu/~FWGNA/FWGSC.Google Scholar
Duke, D., 2011. If the Desert Blooms: A Technological Perspective on Paleoindian Ecology in the Great Basin from the Old River Bed, Utah [Ph.D. Dissertation]. Department of Anthropology, University of Nevada, Reno, Nevada.Google Scholar
Duke, D., 2015. Haskett spear weaponry and protein-residue evidence of proboscidean hunting in the Great Salt Lake Desert, Utah. PaleoAmerica 1, 109112.CrossRefGoogle Scholar
Duke, D., King, J., 2014. A GIS model for predicting wetland habitat in the Great Basin at the Pleistocene-Holocene transition and implications for Paleoindian archaeology. Journal of Archaeological Science 49, p. 276291.CrossRefGoogle Scholar
Duke, D., Young, D.C., 2007. Episodic permanence in Paleoarchaic basin selection and settlement. In: Graf, K., Schmitt, D. (Eds.), Paleoarchaic or Paleoindian? Great Basin Human Ecology at the Pleistocene-Holocene Transition. The University of Utah Press, Salt Lake City, Utah, pp. 123138.Google Scholar
Duke, D., Rice, S.K., Young, D.C., Byerly, R., 2018a. The Playas Archaeological Inventory: 6,194 Acres on the Utah Test and Training Range Including Portions of the West Distal Delta of the Old River Bed and Test Excavations at the Wishbone Site (42TO6384), Tooele County, Utah. Far Western Anthropological Research Group, Inc., Henderson, Nevada.Google Scholar
Duke, D.D., Young, C., Rice, S.K., 2018b. Cultural Resources Inventory of the High-Speed Mover Test Area, a 4,548-acre Portion of the West Delta of the Old River Bed, Utah Test and Training Range, Tooele County, Utah. Far Western Anthropological Research Group, Inc., Henderson, Nevada. [Copies available from State No. U12FF0788m]Google Scholar
Eardley, A. J., 1938. Sediments of the Great Salt Lake, Utah. American Association Petroleum Geologists Bulletin 22, 13051411.Google Scholar
Faure, G., Mensing, T.M., 2005. Principles and applications. John Wiley & Sons, Inc., Hoboken, New Jersey, 879 pp.Google Scholar
Forester, R.M., 1987. Late Quaternary paleoclimate records from lacustrine ostracodes. In: Ruddiman, W.F., Wright, H.E. Jr. (Eds.), North America and Adjacent Oceans During the Last Deglaciation. Geology of North America K-3. Geological Society of America, Boulder, Colorado, pp. 261276.Google Scholar
Forester, R.M., 1991. Ostracode assemblages from springs in the western United States: implications for paleohydrology. Memoirs of the Entomological Society of Canada 155, 181201.CrossRefGoogle Scholar
Forester, R.M., Carter, C., Quade, J., Smith, A.J., 2016. Aquifer and surface-water ostracodes in the Quaternary paleowetland deposits of southern Nevada, USA. Hydrobiologia DOI 10.1007/s10750-016-2966-5CrossRefGoogle Scholar
Gilbert, G. K., 1890. Lake Bonneville. U.S. Geological Survey Monograph 1, 275 pp.Google Scholar
Godsey, H.S., Oviatt, C.G., Miller, D.M., Chan, M.A., 2011. Stratigraphy and chronology of offshore to nearshore deposits associated with the Provo Shoreline, Pleistocene Lake Bonneville, Utah. Palaeogeography, Palaeoclimatology, and Palaeoecology 310, 442450.CrossRefGoogle Scholar
Goebel, T., 2007. Pre-Archaic and Early Archaic technological activities at Bonneville Estates Rockshelter: a first look at the lithic artifact record. In: Graf, K., Schmitt, D. (Eds.), Paleoarchaic or Paleoindian? Great Basin Human Ecology at the Pleistocene-Holocene Transition. The University of Utah Press, Salt Lake City, Utah, pp. 156184.Google Scholar
Goebel, T., and Keene, J.L., 2014. Are Great Basin Stemmed Points as old as Clovis in the intermountain west? A review of the geochronological evidence. In: Parezo, N.J., Janetski, J.C. (Eds.), Archaeology in the Great Basin and Southwest: Papers in Honor of Don D. Fowler. University of Utah Press, Salt Lake City, Utah, pp. 3560.Google Scholar
Goebel, T., Hockett, B., Rhode, D., Graf, K., 2021. Prehistoric human response to climate change in the Bonneville basin, western North America: the Bonneville Estates Rockshelter radiocarbon chronology. Quaternary Science Reviews 260, 106930. https://doi.org/10.1016/j.quascirev.2021.106930.CrossRefGoogle Scholar
Graf, K., 2007. Stratigraphy and chronology of the Pleistocene to Holocene transition at Bonneville Estates Rockshelter, eastern Great Basin. In: Graf, K., Schmitt, D. (Eds.), Paleoindian or Paleoarchaic? Great Basin Human Ecology at the Pleistocene-Holocene Transition. The University of Utah Press, Salt Lake City, Utah, pp. 82104.Google Scholar
Graf, K., Schmitt, D. (Eds.), 2007. Paleoarchaic or Paleoindian? Great Basin Human Ecology at the Pleistocene-Holocene Transition. The University of Utah Press, Salt Lake City, Utah.Google Scholar
Grayson, D.K., 2011. The Great Basin during the Holocene. In: Grayson, D.K. (Ed.), The Great Basin: A Natural Prehistory Revised and Expanded Edition. University of California Press, Berkeley, California, pp. 217286.CrossRefGoogle Scholar
Hall, S.A., Penner, W.L., Palacios-Fest, M.R., Metcalf, A.L., Smith, S.J., 2012. Cool, wet conditions late in the Younger Dryas in semi-arid New Mexico. Quaternary Research 77, 8795.CrossRefGoogle Scholar
Harris-Parks, E., 2016. The micromorphology of Younger Dryas-aged black mats from Nevada, Arizona, Texas and New Mexico. Quaternary Research 85, 94106.CrossRefGoogle Scholar
Hart, W.S., Quade, J., Madsen, D.B., Kaufman, D.S., Oviatt, C.G., 2004. The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system. Geological Society of America Bulletin 116, 11071119.CrossRefGoogle Scholar
Haynes, C.V. Jr., 1967, Quaternary geology of the Tule Springs Area, Clark County, Nevada. In: Wormington, H.M., Ellis, D. (Eds.), Pleistocene Studies in Southern Nevada. Nevada State Museum Anthropological Papers no. 13, Carson City, Nevada, pp. 15104.Google Scholar
Haynes, C.V. Jr., 2008. Younger Dryas “black mats” and the Rancholabrean termination in North America. Proceedings of the National Academy of Sciences of the United States 105, 65206525.CrossRefGoogle ScholarPubMed
Haynes, C.V. Jr., Huckell, B.B., 2007. Murray Springs: A Clovis Site with Multiple Activity Areas in the San Pedro Valley, Arizona. Anthropological Papers of the University of Arizona, No. 71. The University of Arizona Press, Tucson, Arizona.Google Scholar
Haynes, G.M., 2004. An Evaluation of the Chronological Relationships between Great Basin Stemmed and Pinto Series Projectile Points in the Mojave Desert. In: Allen, M.W., Reed, J. (Eds.), The Human Journey and Ancient Life in California's Deserts: Proceedings from the 2001 Millennium Conference. Maturango Museum, Ridgecrest, California, pp. 117128.Google Scholar
Hirschi, J., 2006. Spatial Patterning of Late Paleoindian Stone Tools and Old River Paleochannels at Wild Isle, Utah [M.A. thesis]. Colorado State University, Fort Collins, Colorado.Google Scholar
Hockett, B., Goebel, T., 2019. The projectile points from Bonneville Estates Rockshelter: description of two new point types and implications for the long and short chronology debate in the Great Basin. Nevada Archaeologist 31, 950.Google Scholar
Horwitz, P.E., Chiarizia, R., Dietz, M.L., 1992. A novel strontium-selective extraction chromatographic resin. Solvent Extraction and Ion Exchange 10, 313336.CrossRefGoogle Scholar
Hoskins, A., 2016. Evaluating the Antiquity and Morphology of Corner-notched Dart Points in the Eastern Great Basin [M.A. Thesis]. Department of Anthropology, University of Nevada, Reno, Nevada. https://scholarworks.unr.edu/handle/11714/2167.Google Scholar
Janetski, J.C., Bodily, M.L., Newbold, B.A., Yoder, D.T., 2012. The Paleoarchaic to Early Archaic transition on the Colorado Plateau: the archaeology of North Creek Shelter. American Antiquity 77, 125159.CrossRefGoogle Scholar
Krzymińska, J., Namiotko, T., 2011. An overview of the Quaternary Ostracoda from the Gulf of Gdansk, the Baltic Sea. Joannea Geologie und Paläontologie 11, 104106.Google Scholar
Lightfoot, K.G., Cuthrell, R.Q., Striplen, C.J., Hylkema, M.G., 2013. Rethinking the study of landscape management practices among hunter-gatherers in North America. American Antiquity 78, 285301.CrossRefGoogle Scholar
Lister, K.H., 1975. Quaternary freshwater Ostracoda from the Great Salt Lake Basin, Utah. The University of Kansas Paleontological Contributions, Paper 78, 140.Google Scholar
Madsen, D.B., 2016. The early occupation of the Bonneville Basin. In: Oviatt, C.G., Shroder, J.F. Jr. (Eds.), Lake Bonneville: A Scientific Update. Elsevier, New York, pp. 504525.CrossRefGoogle Scholar
Madsen, D.B., Oviatt, C.G., Young, D.C., Page, D.J., 2015a. Old River Bed Delta geomorphology and Chronology. In: Madsen, D.B., Schmitt, D.N., Page, D.J. (Eds.), The Paleoearchaic occupation of the Old River Bed Delta. University of Utah Anthropological Paper 28. Salt Lake City, The University of Utah Press, pp. 3060.Google Scholar
Madsen, D.B., Schmitt, D.N., Page, D. (Eds.), 2015b. The Paleoearchaic occupation of the Old River Bed Delta. University of Utah Anthropological Paper 28. Salt Lake City, The University of Utah Press.Google Scholar
McCarthy, T.S., Ellery, W.N., 1998. The Okavango Delta. Transactions of the Royal Society of South Africa 52, 157182.CrossRefGoogle Scholar
Meisch, C., 2000. Freshwater Ostracoda of Western and Central Europe. Spektrum Akademischer Verlag GmbH, Heidelberg, Berlin, 522 p.Google Scholar
Meltzer, D.J., Holliday, V.T., 2010. Would North American Paleoindians have noticed Younger Dryas age climate changes? Journal of World Prehistory 23, 141.CrossRefGoogle Scholar
Morrison, R.B., 1991. Quaternary stratigraphic, hydrologic, and climatic history of the Great Basin, with emphasis on Lake Lahontan, Bonneville, and Tecopa. In: Morrison, R.B. (Ed.), Quaternary Nonglacial Geology; Conterminous U.S. The Geology of North America. Geological Society of America, Boulder, Colorado K-2, 283320.Google Scholar
Oviatt, C.G., 1988. Late Pleistocene and Holocene lacustrine fluctuations in the Sevier Lake basin, Utah, U.S.A. Journal of Paleolimnology 1, 921.CrossRefGoogle Scholar
Oviatt, C.G., 2002. Bonneville Basin lacustrine history: the contributions of G.K. Gilbert and Ernst Antevs. In: Hershler, R., Madsen, D.B., Currey, D.R. (Eds.), Great Basin Aquatic Systems History, Smithsonian Contributions to the Earth Sciences, 33. Smithsonian Institution Press, Washington, DC, pp. 121129.Google Scholar
Oviatt, C. G., 2014. The Gilbert Episode in the Great Salt Lake Basin, Utah. Utah Geological Society Miscellaneous Publication 14–3, 120.Google Scholar
Oviatt, C.G., 2015. Chronology of Lake Bonneville, 30,000 to 10,000 yr B.P. Quaternary Science Reviews 110, 166171.CrossRefGoogle Scholar
Oviatt, C.G., 2017. Ostracodes in Pleistocene Lake Bonneville, eastern Great Basin, North America. Hydrobiologia 786, 125135.CrossRefGoogle Scholar
Oviatt, C.G., Shroder, J.F. Jr., 2016. Lake Bonneville: A Scientific Update. Elsevier, Cambridge, Massachusetts.Google Scholar
Oviatt, C.G., Sack, D., Currey, D.R., 1994. The Bonneville Basin, Quaternary, Western United States. In: Gierlowski, K.E., Kelts, K. (Eds.), Global Geological Record of Lake Basins: World and Regional Geology. Cambridge University Press, Cambridge, United Kingdom pp. 371375.Google Scholar
Oviatt, C.G., Thompson, R.S., Kaufman, D.R., Bright, J., Forester, R.M., 1999. Interpretation of the Burmester core, Bonneville Basin, Utah. Quaternary Research 52, 180184.CrossRefGoogle Scholar
Oviatt, C.G., Madsen, D.B., Schmitt, D.N., 2003. Late Pleistocene and early Holocene rivers and wetlands in western Utah. Quaternary Research 60, 200210.CrossRefGoogle Scholar
Oviatt, C.G., Miller, D.M., McGeehin, J.M., Zachary, C., Mahan, S., 2005. The Younger Dryas Phase of Great Salt Lake, Utah, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 219, 263284.CrossRefGoogle Scholar
Oviatt, C.G., Madsen, D.B., Miller, D.M., Thompson, R.S., McGeehin, J.P., 2015. Early Holocene Great Salt Lake, USA. Quaternary Research 84, 5768.CrossRefGoogle Scholar
Palacios-Fest, M.R., 2010. Late Holocene paleoenvironmental history of the upper West Amarillo Creek Valley at archaeological site 41PT185/C, Texas, USA. Boletín de la Sociedad Geológica Mexicana 62, 399436.CrossRefGoogle Scholar
Pfaff, L.J., Schulmeister, M.K., Cronin, T.M., Smith, A.J., Aber, J.S., 2005. Late Quaternary ostracodes as indicators of salinity conditions and paleohydrology in a mid-continent wetland, Cheyenne Bottoms, Kansas. Geological Society of America, Abstracts with Programs 37 (7), 244.Google Scholar
Pigati, J.S., Rech, J.A., Quade, J., Bright, J., 2014. Desert wetlands in the geologic record. Earth Science Reviews 132, 6781.CrossRefGoogle Scholar
Pigati, J.S., Springer, K.B., Honke, J.S., 2019. Desert wetlands record hydrologic variability within the Younger Dryas chronozone, Mojave Desert, USA. Quaternary Research 91, 5162.CrossRefGoogle Scholar
Pilsbry, H.A., 1948. Land Mollusca of North America (north of Mexico). Volume II Part 2. The Academy of Natural Sciences of Philadelphia Monographs, 3: i-xlvii, 5211113. Philadelphia [19 March].Google Scholar
Quade, J., Forester, R.M., Pratt, W.L., Carter, C., 1998. Black mats, spring-fed streams, and late-glacial-age recharge in the southern Great Basin. Quaternary Research 49, 129148.CrossRefGoogle Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Calusen, H.B., Siggaard-Andersen, M.-L., et al. , 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111, D06102. https://doi.org/10.1029/2005JD006079.CrossRefGoogle Scholar
Reimer, P., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., et al. , 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal k BP). Radiocarbon 62, 725757. https://doi.org/10.1017/RDC.2020.41.CrossRefGoogle Scholar
Rhode, D., 2016. Quaternary vegetation changes in the Bonneville Basin. In: Oviatt, C.G., Shroder, J.F. Jr., (Eds.), Lake Bonneville: A Scientific Update. Developments in Earth Surface Processes 20. Elsevier, Amsterdam, pp. 420441.CrossRefGoogle Scholar
Rhode, D., Louderback, L.A., 2015. Bonneville Basin environments during the Pleistocene-Holocene transition. In: Madsen, D.B., Schmitt, D.N., Page, D. (Eds.), The Paleoarchaic Occupation of the Old River Bed Delta. University of Utah Anthropological Papers 128, 2229.Google Scholar
Rhode, D., Madsen, D.B., Jones, K.T., 2006. Antiquity of early Holocene small-seed consumption and processing at Danger Cave. Antiquity 80, 328339.CrossRefGoogle Scholar
Rick, T.C., Wah, J.S., Erlandson, J.E., 2012. Re-evaluating the origins of late Pleistocene fire areas on Santa Rosa Island, California, USA. Quaternary Research 78, 353362.CrossRefGoogle Scholar
Rosencrance, R.L., 2019. Assessing the Chronological Variation within Western Stemmed Tradition Projectile Points [M.A. thesis]. Department of Anthropology, University of Nevada, Reno, Nevada. https://scholarworks.unr.edu/handle/11714/5790.Google Scholar
Rutherford, J., 2000. Ecology Illustrated Field Guides. Wilfrid Laurier University, Waterloo, Ontario. [http://info.wlu.ca/~wwwbiol/bio305/Database, accessed May 28, 2007]Google Scholar
Schmitt, D.N., Lupo, K.D., 2018. On early-Holocene moisture and small-mammal histories in the Bonneville Basin, western United States. The Holocene 28, 492498.CrossRefGoogle Scholar
Schmitt, D.N., Madsen, D.B., Oviatt, C.G. Quist, R., 2007. Late Pleistocene/early Holocene geomorphology and human occupation of the Old River Bed Delta, Western Utah. In: Graf, K., Schmitt, D. (Eds.), Paleoindian or Paleoarchaic?: Great Basin Human Ecology at the Pleistocene-Holocene Transition. The University of Utah Press, Salt Lake City, pp. 105119.Google Scholar
Smith, G.M., Duke, D., Jenkins, D.L., Goebel, T., Davis, L.G., O'Grady, P., Stueber, D., Pratt, J.E., Smith, H.L., 2020. The Western Stemmed Tradition: problems and prospects in Paleoindian archaeology in the Intermountain West. PaleoAmerica 6, 2342. https://doi.org/10.1080/20555563.2019.1653153CrossRefGoogle Scholar
Springer, K.B., Manker, C.R., Pigati, J.S., 2015. Dynamic response of desert wetlands to abrupt climate change. Proceedings of the National Academy of Sciences of the United States of America 112, 1452214526.CrossRefGoogle ScholarPubMed
Steffensen, J.P., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jenzen, D., Fischer, H., Goto-Azuma, K., et al. , 2008. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 312, 680684.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., 2021. CALIB 8.2 [WWW program] at http://calib.org. [accessed June 26, 2021]Google Scholar
Sutton, M.Q., Basgall, M.E., Gardner, J.K., Allen, M.W., 2007. Advances in understanding Mojave Desert prehistory. In: Jones, T.L., Klar, K.A. (Ed.), California Prehistory: Colonization, Culture, and Complexity. AltaMira Press, Lanham, Maryland, pp. 229245.Google Scholar
Whatley, R., 1983. Some simple procedures for enhancing the use of Ostracoda in palaeoenvironmental analysis: Norwegian Petroleum Directorate Bulletin 2, 129146.Google Scholar
Wigand, P.E., Rhode, D., 2002. Great Basin vegetation history and aquatic systems: the last 15,000 years. In: Herschler, R., Madsen, D.B., Currey, D.R. (Eds.), Great Basin Aquatic Systems History. Smithsonian Institution Press, Washington, D.C., pp. 309368.Google Scholar
Wilkinson, I.P., Bubikyan, S.A., Gulakyan, S.Z., 2005. The impact of late Holocene environmental change on lacustrine Ostracoda in Armenia. Palaeogeography, Palaeoclimatology, Palaeoecology 225, 187202.CrossRefGoogle Scholar
Willig, J.A., Aikens, C.M., Fagan, J.L. (Eds.), 1988. Early Human Occupation in Far Western North America: The Clovis-Archaic Interface. Nevada State Museum Anthropological Papers No. 21, Nevada State Museum, Carson City, Nevada.Google Scholar
Wolbach, W.S., Ballard, J.P., Mayewski, P.A., Adedeji, V., Bunch, T.E., Firestone, R.B., French, T.A., et al. , 2018. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ~12,800 years ago. 1. Ice cores and glaciers. The Journal of Geology 126, 165184. https://doi.org/10.1086/695703.CrossRefGoogle Scholar
Wood, R.D. 1967. Charophytes of North America: A Guide to the Species of Charophyta of North America, Central America, and the West Indies. Memorial Union University of Rhode Island, Kingston, Rhode Island, 72 pp.Google Scholar
Supplementary material: File

Palacios-Fest et al. supplementary material

Table S1

Download Palacios-Fest et al. supplementary material(File)
File 25.6 KB
Supplementary material: File

Palacios-Fest et al. supplementary material

Table S1

Download Palacios-Fest et al. supplementary material(File)
File 27.2 KB
Supplementary material: File

Palacios-Fest et al. supplementary material

Table S2

Download Palacios-Fest et al. supplementary material(File)
File 57.3 KB