Published online by Cambridge University Press: 20 January 2017
Arid slopes on the southeastern side of Maui are densely covered with archaeological remains of Hawaiian settlement from the late prehistoric to early postcontact period (ca. A.D. 1500–1860). Permanent habitation sites, agricultural features, and religious structures indicate perennial occupation and farming in a subregion called Kahikinui, yet there is presently no year-round water source. We explore the possibility that postcontact deforestation led to the loss of either (1) perennial channel flow or (2) perennial springs or seeps. To investigate the first possibility, we estimated ancient peak flows on 11 ephemeral channels in Kahikinui using field measurements and paleohydrology. Peak-flow estimates (3–230 m3/s) for a given drainage area are smaller than those for current perennial Maui streams, but are equivalent to gauged peak flows from ephemeral and intermittent streams in the driest regions of Hawai’i and Maui islands. This is consistent with the long-term absence of perennial channel flow in Kahikinui. On the other hand, others have shown that canopy fog-drip in Hawai’i can be greater than rainfall and thus a large part of groundwater recharge. Using isolated live remnants and snags, we estimate the former extent of the forest upstream from archaeological sites. We use rough estimates of the loss of fog-drip recharge caused by deforestation and apply a simple, steady-state hydrologic model to calculate potential groundwater table fall. These order-of-magnitude estimates indicate that groundwater could have fallen by a minimum of several meters, abandoning perennial seeps. This is consistent with archaeological evidence for former perennial seeps, such as stonewalls enclosing potential seeps to protect them. Although longer-term reductions in rainfall cannot be ruled out as a factor, deforestation and loss of fog-drip recharge are obvious and more immediate reasons for a recent loss of perennial water in Kahikinui, Maui.