Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T06:03:31.675Z Has data issue: false hasContentIssue false

Paleoflood records from sinkholes using an example from the Ebro River floodplain, northeastern Spain

Published online by Cambridge University Press:  05 June 2017

Francisco Gutiérrez*
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, C/. Pedro Cerbuna 12, 50009 Zaragoza, Spain
Mario Zarroca
Affiliation:
Departamento de Geología, Universidad Autónoma de Barcelona, E-08193 Barcelona, Spain
Carmen Castañeda
Affiliation:
Estación Experimental de Aula Dei, EEAD-CSIC, Av. Montañana 1001, 50059 Zaragoza, Spain
Domingo Carbonel
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, C/. Pedro Cerbuna 12, 50009 Zaragoza, Spain
Jesús Guerrero
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, C/. Pedro Cerbuna 12, 50009 Zaragoza, Spain
Rogelio Linares
Affiliation:
Departamento de Geología, Universidad Autónoma de Barcelona, E-08193 Barcelona, Spain
Carles Roqué
Affiliation:
Àrea de Geodinàmica Externa i Geomorfologia, Universitat de Girona, Campus Montilivi, E-17071 Girona, Spain
Pedro Lucha
Affiliation:
Departamento de Didáctica de las Ciencias Experimentales, Universidad de Zaragoza, C/. Pedro Cerbuna 12, 50009 Zaragoza, Spain
*
*Corresponding author at: Departamento de Ciencias de la Tierra, Universidad de Zaragoza, C/. Pedro Cerbuna 12, 50009 Zaragoza, Spain. E-mail: [email protected] (F. Gutiérrez).

Abstract

This work introduces for the first time the concept of using sinkholes in fluvial valleys as recorders of past floods. The notion is illustrated through the investigation of a complex sinkhole located in a broad floodplain underlain by salt-bearing Cenozoic evaporites. This active sinkhole comprises a large subsidence depression affecting the floodplain and the edge of a terrace, and a nested collapse sinkhole that used to host a sinkhole pond. A borehole drilled in the buried sinkhole pond revealed an ~7.8-m-thick fill that records around 2700 yr of clayey lacustrine deposition interrupted by three types of detrital facies. Two thick pebble gravel beds have been attributed to major high-competence floods: a paleoflood that occurred in Visigothic times (1537–1311 cal yr BP) and the 1961 Great Ebro River Flood, which is the largest event of the instrumental record. A trench dug in the portion of the terrace affected by subsidence exposed a mid-Holocene slack-water paleoflood deposit. The disadvantages and advantages of sinkholes as archives of past flood histories are discussed.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnaud, A., Adam, N., Hanssen, R., Inglada, J., Duro, J., Closa, J., Eineder, M., 2003. ASAR ERS interferometric phase continuity. 2003 IEEE International Geoscience and Remote Sensing Symposium: Proceedings. IEEE, Piscataway, NJ, pp. 1133–1135.Google Scholar
Baker, V.R., 1987. Paleoflood hydrology and extraordinary flood events. Journal of Hydrology 96, 7999.Google Scholar
Baker, V.R., 2003. Paleofloods and extended discharge records. In Gregory, K.J., Benito, G. (Eds.), Paleohydrology: Understanding Global Change. Wiley, Chichester, UK, pp. 307323.Google Scholar
Baker, V.R., Webb, R.H., House, P.K., 2002. The scientific and societal value of paleoflood hydrology. In House, P.K., Webb, R.H., Baker, V.R., Levish, D.R. (Eds.), Ancient Floods, Modern Hazards: Principles and Applications of Paleoflood Hydrology. Water Science and Application 5. American Geophysical Union, Washington, DC, pp. 119.Google Scholar
Barreiro-Lostres, F., Moreno, A., Giralt, S., Caballero, M., Valero-Garcés, B., 2014. Climate, palaeohydrology and land use change in the Central Iberian Range over the last 1.6 kyr: the La Parra Lake record. Holocene 24, 11771192.Google Scholar
Batalla, R.J., Gómez, C.M., Kondolf, G.M., 2004. Reservoir-induced hydrological changes in the Ebro River basin (NE Spain). Journal of Hydrology 290, 117136.Google Scholar
Benito, G., Lang, M., Barriendos, M., Llasat, C., Francés, F., Ouarda, T., Thorndycraft, V.R., et al., 2004. Use of systematic, paleoflood and historical data for the improvement of flood risk estimation: review of scientific methods. Natural Hazards 31, 623643.Google Scholar
Benito-Calvo, A., Gutiérrez, F., Carbonel, D., Desir, G., Guerrero, J., Magri, O., Karampaglidis, T., Fabregat, I, 2016. Measuring deformation related to active sinkholes with ground-based 3D laser scanner: a case study in the evaporite karst of the Ebro Valley, NE Spain. In Durán, J.J., Montes, M., Robador, A., Salazar, A. (Eds.), Comprendiendo el relieve: Del pasado al futuro. XIV Reunión Nacional de Geomorfología, Málaga. Instituto Geológico y Minero de España, Madrid, pp. 599606.Google Scholar
Brown, A.L., Reinhardt, E.G., van Hengstum, P.J., Pilarczyk, J.E., 2014. A coastal Yucatan sinkhole records intense hurricane events. Journal of Coastal Research 30, 418428.Google Scholar
Cabezas, A., Comín, F.A., Beguería, S., Trabucchi, M., 2009. Hydrologic and landscape changes in the Middle Ebro River (NE Spain): implications for restoration and management. Hydrology and Earth System Sciences 13, 273284.Google Scholar
Calvo, J.P., Pozo, M., Silva, P.G., Morales, J., 2013. Pattern of sedimentary infilling of fossil mammal traps formed in pseudokarst at Cerro de los Batallones, Madrid Basin, central Spain. Sedimentology 60, 16811708.Google Scholar
Carbonel, D., Rodríguez, V., Gutiérrez, F., McCalpin, J.P., Linares, R., Roqué, C., Zarroca, M., Guerrero, J., 2014. Evaluation of trenching, ground penetrating radar (GPR) and electrical resistivity tomography (ERT) for sinkhole characterization. Earth Surface Processes and Landforms 39, 214227.Google Scholar
Carbonel, D., Rodríguez-Tribaldos, V., Gutiérrez, F., Galve, J.P., Guerrero, J., Zarroca, M., Roqué, C., Linares, R., McCalpin, J.P., Acosta, E., 2015. Investigating a damaging buried sinkhole cluster in an urban area integrating multiple techniques: geomorphological surveys, DinSAR, GPR, ERT, and trenching. Geomorphology 229, 316.Google Scholar
Carbonell, E., Bermúdez de Castro, J.M., Parés, J.M., Pérez-González, A., Cuenca-Bescos, G., Ollé, A., Mosquera, M., et al., 2008. The first hominid of Europe. Nature 452, 465469.Google Scholar
Castañeda, C., Gutiérrez, F., Manunta, M., Galve, J.P., 2009. DInSAR measurements of ground deformation by sinkholes, mining subsidence, and landslides, Ebro River, Spain. Earth Surface Processes and Landforms 34, 15621574.CrossRefGoogle Scholar
Confederación Hidrográfica del Ebro (CHEbro). 2015. Informe sobre las avenidas del primer trimestre de 2015 en la Cuenca del Ebro. CHEbro, Zaragoza, Spain. http://www.chebro.es/contenido.streamFichero.do?idBinario=19259.Google Scholar
Comisión Nacional de Protección Civil (CNPC). 1985. Estudio de inundaciones históricas. Mapa de riesgos potenciales. Cuenca del Ebro. Comisión Técnica de Inundaciones. Gobierno de España, Madrid.Google Scholar
Crosetto, M., Biescas, E., Duro, J., Closa, J., Arnaud, A., 2008. Generation of advanced ERS and Envisat interferometric SAR products using the Stable Point Network technique. Photogrammetric Engineering and Remote Sensing 74, 443450.Google Scholar
Dahlin, T., Zhou, B., 2004. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting 52, 379398.Google Scholar
Desir, G., Guerrero, J., Gutiérrez, F., Carbonel, D., Merino, J., Benito, A., Fabregat, I., Roqué, C., Zarroca, M., Linares, R., 2016. Monitorización de dolinas activas en el entorno de Zaragoza mediante nivelación geométrica de alta precisión. In Durán, J.J., Montes, M., Robador, A., Salazar, A. (Eds.), Comprendiendo el relieve: Del pasado al futuro. XIV Reunión Nacional de Geomorfología, Málaga. Instituto Geológico y Minero de España, Madrid, pp. 607613.Google Scholar
Espejo, F., Domenech, S.M., Ollero, A., Sanchez, M., 2008. La crecida del Ebro de 2007: Procesos hidrometeorológicos y perspectivas de gestión del riesgo. Boletín de la Asociación de Geógrafos Españoles 48, 129154.Google Scholar
Ford, D.C., Williams, P., 2007. Karst Hydrogeology and Geomorphology. Wiley, Chichester, UK.Google Scholar
Galve, J.P., Castañeda, C., Gutiérrez, F., 2015. Railway deformation detected by DInSAR over active sinkholes in the Ebro Valley evaporite karst, Spain. Natural Hazards and Earth System Science 3, 39673981.Google Scholar
Galve, J.P., Gutiérrez, F., Lucha, P., Bonachea, J., Cendrero, A., Gimeno, M.J., Gutiérrez, M., Pardo, G., Remondo, J., Sánchez, J.A., 2009. Sinkholes in the salt-bearing evaporite karst of the Ebro River valley upstream of Zaragoza city (NE Spain): geomorphological mapping and analysis as a basis for risk management. Geomorphology 108, 145158.Google Scholar
Gischler, E., Shinn, E.A., Oschmann, W., Fiebig, J., Buter, N.A., 2008. A 1500-yr Holocene Caribbean climate archive from the Blue Hole, Lighthouse Reef, Belize. Journal of Coastal Research 24, 14951505.CrossRefGoogle Scholar
González-Sampériz, P., Valero-Garcés, B.L., Moreno, A., Morellón, M., Navas, A., Machín, J., Delgado-Huertas, A., 2008. Vegetation changes and hydrological fluctuations in the Central Ebro Basin (NE Spain) since the Late Glacial period: saline lake records. Paleogeography, Paleoclimatology, Paleoecology 259, 157181.CrossRefGoogle Scholar
Griffiths, D.H., Barker, R.D., 1993. Two-dimensional resistivity imaging and modelling in areas of complex geology. Journal of Applied Geophysics 29, 211226.Google Scholar
Guerrero, J., Gutiérrez, F., Galve, J.P., 2013. Large depressions, thickened terraces, and gravitational deformation in the Ebro River valley (Zaragoza area, NE Spain): evidence of glauberite and halite interstratal karstification. Geomorphology 196, 162176.CrossRefGoogle Scholar
Gutiérrez, F., 2016. Sinkhole hazards. In Cutter, S.L. (Ed.), Oxford Research Encyclopedia of Natural Hazard Science. Oxford University Press, Oxford, pp. 188. http://naturalhazardscience.oxfordre.com/view/10.1093/acrefore/9780199389407.001.0001/acrefore-9780199389407-e-40?print=pdf.Google Scholar
Gutiérrez, F., Cooper, A.H., 2013. Surface morphology of gypsum karst. In Frumkin, A. (Ed.), Treatise on Geomorphology Vol. 6, Karst Geomorphology. Elsevier, Amsterdam, pp. 425437.CrossRefGoogle Scholar
Gutiérrez, F., Fabregat, I., Roqué, C., Carbonel, D., Guerrero, J., García-Hermoso, F., Zarroca, M., Linares, R., 2016. Sinkholes and caves related to evaporite dissolution in a stratigraphically and structurally complex setting, Fluvia Valley, eastern Spanish Pyrenees. Geological, geomorphological and environmental implications. Geomorphology 267, 7697.Google Scholar
Gutiérrez, F., Galve, J.P., Guerrero, J., Lucha, P., Cendrero, A., Remondo, J., Bonachea, J., Gutiérrez, M., Sánchez, J.A., 2007. Typology, spatial distribution and detrimental effects of the sinkholes developed in the alluvial evaporite karst of the Ebro River valley downstream Zaragoza city. Earth Surface Processes and Landforms 32, 912928.Google Scholar
Gutiérrez, F., Galve, J.P., Lucha, P., Bonachea, J., Jordá, L., Jordá, R., 2009. Investigation of a large collapse sinkhole affecting a multi-storey building by means of geophysics and the trenching technique, Zaragoza city, NE Spain. Environmental Geology 58, 11071122.Google Scholar
Gutiérrez, F., Galve, J.P., Lucha, P., Castañeda, C., Bonachea, J., Guerrero, J., 2011. Integrating geomorphological mapping, trenching, InSAR and GPR for the identification and characterization of sinkholes in the mantled evaporite karst of the Ebro Valley (NE Spain). Geomorphology 134, 144156.Google Scholar
Gutiérrez, F., Guerrero, J., Lucha, P., 2008. A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain. Environmental Geology 53, 9931006.Google Scholar
Gutiérrez, F., Mozafari, M., Carbonel, D., Gómez, R., Raeisi, E., 2015. Leakage problems in dams built on evaporites. The case of La Loteta Dam (NE Spain), a reservoir in a large karstic depression generated by interstratal salt dissolution. Engineering Geology 185, 139154.Google Scholar
Gutiérrez, F., Parise, M., De Waele, J., Jourde, H., 2014. A review on natural and human induced geohazards and imapcts in karst. Earth Science Reviews 138, 6188.Google Scholar
Gutiérrez, F., Valero-Garcés, B., Desir, G., González-Sampériz, P., Gutiérrez, M., Linares, R., Zarroca, M., et al., 2013. Late Holocene evolution of playa lakes in the central sector of the Ebro Depression based on geophysical surveys and morpho-stratigraphic analysis of lacustrine terraces. Geomorphology 196, 177197.Google Scholar
Hart, E.A., 2014. Legacy sediment stored in sinkholes: a case study of three urban watersheds in Tennessee, United States of America. Physical Geography 35, 514531.Google Scholar
Henderson, F.M., Lewis, A.J., 1998. Manual of Remote Sensing: Principles and Applications of Imaging Radars. John Wiley and Sons, New York.Google Scholar
Hyatt, J.A., Gilbert, R., 2004. Subbottom acoustic and sedimentary records of past surface water-groundwater exchange through sinkhole lakes in south Georgia, USA. Environmental Geology 46, 3246.Google Scholar
Kochel, R.C., Baker, V.R., 1982. Paleoflood hydrology. Science 215, 353361.Google Scholar
Kochel, R.C., Baker, V.R., 1988. Paleoflood analysis using slackwater deposits. In Baker, V.R., Kochel, R.C., Patton, P.C. (Eds.), Flood Geomorphology. Wiley, New York, pp. 357402.Google Scholar
Lane, P., Donnelly, J.P., Woodruff, J.D., Hawkes, A.D., 2011. A decadally-resolved paleohurricane record archived in the late Holocene sediments of a Florida sinkhole. Marine Geology 287, 1430.CrossRefGoogle Scholar
Langer, H., Offermann, H., 1982. On the solubility of sodium chloride in water. Journal of Crystal Growth 60, 389392.Google Scholar
Laury, R.L., 1980. Paleoenvironment of a late Quaternary mammoth-bearing sinkhole deposit, Hot Springs, South Dakota. Geological Society of America Bulletin 91, 465475.Google Scholar
Loke, M.H., Barker, R.D., 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting 44, 131152.CrossRefGoogle Scholar
Loke, M.H., Chambers, J.E., Rucker, D.F., Kuras, O., Wilkinson, P.B., 2013. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics 95, 135156.Google Scholar
López-Moreno, J.I., Beguería, S., García-Ruiz, J.M., 2002. Influence of the Yesa reservoir on floods of the Aragón River, central Spanish Pyrenees. Hydrology and Earth System Sciences 6, 753762.Google Scholar
Losada, J.A., Montesinos, S., Omedas, M., García-Vera, M.A., Galván, R., 2004. Cartografía de las inundaciones del río Ebro en febrero de 2003: trabajos de fotointerpretación, teledetección y análisis SIG en el GIS-Ebro. In Conesa, C., Álvarez, Y., Martínez, J.B. (Eds.), Medio ambiente, recursos y riesgos naturales: análisis mediante tecnología SIG y teledetección. Vol. 2. Asociación de Geógrafos Españoles–Universidad de Murcia, Murcia, Spain, pp. 207218.Google Scholar
Magdaleno, F., Fernández-Yuste, J.A., 2011. Meander dynamics in a changing corridor. Geomorphology 130, 197207.Google Scholar
Maiziels, J.K., 1983. Paleovelocity and paleodischarge determination for coarse gravel deposits. In Gregory, K.J. (Ed.), Background to Paleohydrology. Wiley, Chichester, UK, pp. 101139.Google Scholar
McCalpin, J.P., 2009a. Field techniques in paleoseismology—terrestrial environments. In McCalpin, J.P. (Ed), Paleoseismology. Academic Press, San Diego, CA, pp. 29118.Google Scholar
McCalpin, J.P., 2009b. Paleoseismology in extensional tectonic environments. In McCalpin, J.P. (Ed.), Paleoseismology. Academic Press, San Diego, CA, pp. 171269.Google Scholar
Mejón, M., 2011. El Ebro desbordado. Ayuntamiento de Zaragoza, Zaragoza, Spain.Google Scholar
Morellón, M., Valero-Garcés, B., Anselmetti, F., Ariztegui, D., Schnellmann, M., Moreno, A.N.A., Mata, P., Rico, M., Corella, J.P., 2009. Late Quaternary deposition and facies model for karstic Lake Estanya (North-eastern Spain). Sedimentology 56, 15051534.Google Scholar
Oliva, F., Viau, A.E., Bjornson, J., Desrochers, N., Bonneau, M.-A., 2016. A 1300 year reconstruction of paleofloods using oxbow lake sediments in temperate southwestern Québec, Canada. Canadian Journal of Earth Sciences 53, 378386.Google Scholar
Ollero, A., 1995. Dinámica reciente del cauce del Ebro en la Reserva Natural de los Galachos (Zaragoza). Cuaternario y Geomorfología 9, 8593.Google Scholar
Ollero, A., 2010. Channel changes and floodplain management in the meandering middle Ebro River, Spain. Geomorphology 117, 247260.Google Scholar
Ortí, F., Salvany, J.M., 1997. Continental evaporitic sedimentation in the Ebro Basin during the Miocene. In Busson, G., Schreiber, B.C. (Eds.), Sedimentary Deposition in Rift and Foreland Basins in France and Spain. Columbia University Press, New York, pp. 420429.Google Scholar
Quirantes, J., 1978. Estudio sedimentológico y estratigráfico del Terciario continental de los Monegros. Institución Fernando el Católico (CSIC), Zaragoza, Spain.Google Scholar
Regato, P., 1988. Contribución al estudio de la flora y la vegetación del “Galacho de La Alfranca” en relación con la evolución del sistema fluvial. Diputación General de Aragón, Zaragoza, Spain.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Grootes, P.M., et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Salvany, J.M., 2009. Geología del yacimiento glauberítico de Montes de Torrero. Universidad de Zaragoza, Zaragoza, Spain.Google Scholar
Salvany, J.M., García-Veigas, J., Ortí, F., 2007. Glauberite–halite association of the Zaragoza Gypsum Formation (Lower Miocene, Ebro Basin, NE Spain). Sedimentology 54, 443467.Google Scholar
Sheffer, N.A., Enzel, Y., Benito, G., Grodek, T., Poart, N., Lang, M., Coeur, D., 2003. Paleofloods and historical floods of the Ardèche River, France. Water Resources Research 39, 1376. http://dx.doi.org/10.1029/2003WR002468.Google Scholar
Simón Gómez, J.L., Soriano Jiménez, M.A., Arlegui Crespo, L., Caballero Burbano, J., 1998. Estudio de riesgos de hundimientos kársticos en el corredor de la carretera de Logroño. Memoria del Plan General de Ordenación Urbana de Zaragoza (P.G.O.U.Z.), Anejo 3.2. Departamento de Geología, Universidad de Zaragoza, Zaragoza, Spain. http://www.zaragoza.es/contenidos/urbanismo/pgouz/memoria/anejos/anejo03/anejo032.pdf.Google Scholar
Thorndycraft, V.R., Benito, G., 2006. The Holocene fluvial chronology of Spain: evidence from a newly compiled radiocarbon database. Quaternary Science Reviews 25, 223234.Google Scholar
Torrescusa, S., Klimowitz, J., 1990. Contribución al conocimiento de las evaporitas Miocenas (Formación Zaragoza) de la Cuenca del Ebro. In Ortí, F., Salvany, J.M. (Eds.), Formaciones evaporíticas de la Cuenca del Ebro y cadenas periféricas y de la zona de Levante. ENRESA-GPG, Barcelona, Spain, pp. 120122.Google Scholar
Turnage, K.M., Lee, S.Y., Foss, J.E., Kim, K.H., Larsen, I.L., 1997. Comparison of soil erosion and deposition rates using radiocesium, RUSLE, and buried soils in dolines in East Tennessee. Environmental Geology 29, 110.Google Scholar
Webb, R.H., Blainey, J.B., Hyndman, D.W., 2002. Paleoflood hydrology of the Paria River, southern Utah and northern Arizona, USA. In House, P.K., Webb, R.H., Baker, V.R., Levish, D.R. (Eds.), Ancient Floods, Modern Hazards: Principles and Applications of Paleoflood Hydrology. Water Science and Application 5. American Geophysical Union, Washington, DC, pp. 295310.Google Scholar
Whitmore, T.J., Brenner, M., Curtis, J.H., Dahlin, B.H., Leyden, B.W., 1996. Holocene climatic and human influences on lakes of the Yucatan Peninsula, Mexico: an interdisciplinary, palaeolimnological approach. Holocene 6, 273287.Google Scholar
Williams, G.P., 1984. Paleohydrological equations for rivers. In Costa, J.E., Fleisher, P.J. (Eds.), Developments and Applications of Geomorphology. Springer-Verlag, Berlin, pp. 343367.Google Scholar
Zaidner, Y., Frumkin, A., Porat, N., Tsatskin, A., Yeshurun, R., Weissbrod, L., 2014. A series of Mousterian occupations in a new type of site: the Nesher Ramla karst depression, Israel. Journal of Human Evolution 66, 117.Google Scholar
Zarroca, M., Comas, X., Gutiérrez, F., Carbonel, D., Linares, R., Roqué, C., Mozaffari, M., Guerrero, J., Pellicer, X.M., 2016. The application of GPR and ERI in combination with exposure logging and retrodeformation analysis to characterize sinkholes and reconstruct their impact on fluvial sedimentation. Earth Surface Processes and Landforms (in press). http://dx.doi.org/10.1002/esp.4069.Google Scholar