Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-19T09:13:42.713Z Has data issue: false hasContentIssue false

Paleoclimate Changes during the last 100,000 yr from a Record in the Brazilian Atlantic Rainforest region and Interhemispheric Comparison

Published online by Cambridge University Press:  20 January 2017

M.-P. Ledru
Affiliation:
Universidade de São Paulo, Instituto de Geociências, Rua do Lago 562, 05508-900 São Paulo-SP, Brazil ISEM/Paléoenvironnements, CNRS UMR 5554, Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
D.-D. Rousseau
Affiliation:
ISEM/Paléoenvironnements, CNRS UMR 5554, Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
F.W. Cruz Jr.
Affiliation:
Universidade de São Paulo, Instituto de Geociências, Rua do Lago 562, 05508-900 São Paulo-SP, Brazil Department of Geosciences, University of Massachusetts, Amherst, MA 01002, USA
C. Riccomini
Affiliation:
Universidade de São Paulo, Instituto de Geociências, Rua do Lago 562, 05508-900 São Paulo-SP, Brazil
I. Karmann
Affiliation:
Universidade de São Paulo, Instituto de Geociências, Rua do Lago 562, 05508-900 São Paulo-SP, Brazil
L. Martin
Affiliation:
Institut de Recherche pour le Développement, 32 av. Henri Varagnat, 93143 Bondy cedex, France

Abstract

A long terrestrial record, Colônia CO-3, from the Atlantic rainforest region in Brazil (23°52′S, 46°42′20 ʺW, 900 m a.s.l.) registrates variations in the forest expansion during the last 100,000 yr. The 780-cm depth core was analyzed at 2-cm intervals and arboreal pollen frequencies were compared to nearby speleothem stable isotope records and neighboring marine records from the tropical Atlantic. To evaluate regional versus global climate forcing, our record was compared with Greenland and Antarctic ice-core records. These comparisons suggest that changes in temperature seen in polar latitudes relate to moisture changes: e.g., to changes in the length of the dry season, in tropical and subtropical latitudes during glacial as well as interglacial times. These climatic changes result from changes in the frequency of polar air incursions to these latitudes inducing a permanent cloud cover and precipitation. This is an important result that should help define paleoclimatic features in the Southern Hemisphere for the last glaciation.

Type
Short Papers
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, E., Rostek, F., and Sonzogni, C. (1997). Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385, 707710.Google Scholar
Behling, H. (1997). Late Quaternary vegetation, climate and fire history of the Araucaria forest and campos region from Serra Campos Gerais, Paraná state (South Brazil). Review of Palaeobotany and Palynology 97, 109121.Google Scholar
Bennett, K.D., Haberle, S.G., and Lumley, S.H. (2000). The last glacial-Holocene transition in southern Chile. Science 290, 325327.CrossRefGoogle ScholarPubMed
Blunier, T., and Brook, E.J. (2001). Timing of millenial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109 CrossRefGoogle ScholarPubMed
Blunier, T., Chappellaz, J., Schwander, J., Dällenbach, A., Stauffer, B., Stocker, T.F., Raynaud, D., Jouzel, J., Clausen, H.B., Hammer, C.U., and Johnsen, S.J. (1998). Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, 739743.Google Scholar
Bradbury, J.P., Grosjean, M., Stine, S., and Sylvestre, F. (2001). Full and late glacial lake records along the PEP 1 transect: their role in developing interhemispheric paleoclimate interactions.Markgraf, V. Interhemispheric Climate Linkages Academic Press, San Diego.265291.Google Scholar
Broecker, W.S. (1998). Paleocean circulation during the last deglaciation: a bipolar seesaw?. Paleoceanography 13, 119121.Google Scholar
J.F.W., Cruz (2003). “Estudo paleoclimático e paleoambiental a partir de registros geoquímicos quaternários em espeleotemas das regiões de Iporanga (SP) e Botuverá (SC). ” Unpublished PhD thesis,Universidade de São Paulo, .Google Scholar
Cruz, J.F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Cardoso, A.O., Ferrari, J.A., Silva Dias, P.L., Viana, O. Jr.(2005). Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, 6366.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahljensen, D.S., Gundestrup, N., Hammer, C.U., Hviberg, C.S., Steffensen, J.R., Sveinbjörnsdottir, A.E., Jouzel, J., and Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice core record. Nature 364, 218220.CrossRefGoogle Scholar
deMenocal, P.B., Ruddiman, W.F., and Pokras, E.M. (1993). Influences of high- and low-latitude processes on African terrestrial climate: Pleistocene eolian records from equatorial Atlantic ocean drilling program site 663. Paleooceanography 8, 209242.CrossRefGoogle Scholar
EPICA, c.m. (2004). Eight glacial cycles from an Antarctic ice core. Nature 429, 623628.CrossRefGoogle Scholar
Faegri, K., and Iversen, J. (1989). Textbook of Pollen Analysis. John Wiley and Sons, Chichester.Google Scholar
R.J.F., Garcia (2003). “Estudo florístico dos campos alto-montanos e matas nebulares do Parque Estadual da Serra do Mar, Núcleo Curucutu, São Paulo, SP, Brasil. ” PhD dissertation,Universidade de São Paulo, .Google Scholar
Garreaud, R.D. (1999). Cold air incursions over subtropical and tropical South America: a numerical case study. Monthly Weather Review 127, 28232853.Google Scholar
Garreaud, R.D., and Aceituno, P. (2002). Atmospheric circulation over South America: mean features and variability.Veblen, T., Orme, A., Young, K. The Physical Geography of South America Oxford Univ. Press, Oxford.Google Scholar
Grimm, E.C., Lozano-Garcia, S., Behling, H., and Markgraf, V. (2001). Holocene vegetation and climate variability in the Americas.Markgraf, V. Interhemispheric Climate Linkages Academic Press, San Diego.325370.CrossRefGoogle Scholar
Grootes, P.M., Steig, E.J., Stuiver, M., Waddington, E.D., and Morse, D.L. (2001). The Taylor Dome Antarctic 18O record and globally synchronous changes in climate. Quaternary Research 56, 289298.Google Scholar
Heusser, C.J. (1989). Southern Westerlies during the last glacial maximum. Quaternary Research 31, 423425.CrossRefGoogle Scholar
Hooghiemstra, H. (1984). Vegetational and Climatic History of the High Plain Of Bogotá, Colombia: A Continuous Record of the Last 3.5 Million Years. J. Cramer, Vaduz.Google Scholar
Hooghiemstra, H., and Ran, E.T.H. (1994). Late Pliocene–Pleistocene high resolution pollen sequence of Colombia: an overview of climatic change. Quaternary International 21, 6380.CrossRefGoogle Scholar
Hooghiemstra, H., and Van't Veer, R. (1999). A 0,6 million year pollen record from the Colombian Andes. PAGES Newsletter 7, 45.Google Scholar
Instituto Socio Ambiental, (2001). Dossiê Mata Atlantica, São Paulo.Google Scholar
Johnsen, S.J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J.P., Clausen, H.B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdottir, A.E., and White, J. (2001). Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science 16, 299307.CrossRefGoogle Scholar
Jöris, O., and Weninger, B. (1998). Extension of the 14C Calibration Curve to ca. 40,000 cal BC by Synchronizing Greenland 18O/16O Ice Core Records and North Atlantic foraminifera profiles: a comparison with U/Th coral data. Radiocarbon 40, 495504.CrossRefGoogle Scholar
Jouzel, J., Lorius, C., Johnsen, S.J., and Grootes, P.M. (1994). Climate instabilities: Greenland and Antarctic records. Compte Rendus de l'Académie des Sciences de Paris 319, 6577.Google Scholar
Jouzel, J.-R., Vaikmae, R., Petit, J.R., Martin, M., Duclos, Y., Stievenard, M., Lorius, C., Toots, M., Melières, M.-A., Burckle, L.H., Barkov, N.I., and Kotlyakov, V.M. (1995). The two-step shape and timing of the last deglaciation in Antarctica. Climate Dynamics 11, 151161.CrossRefGoogle Scholar
Kershaw, A.P. (1974). A long continuous pollen sequence from North-eastern Australia. Nature 251, 222223.Google Scholar
Kershaw, A.P. (1978). Record of last interglacial–glacial cycle from Northeastern Queensland. Nature 272, 159161.CrossRefGoogle Scholar
Kershaw, A.P. (1994). Pleistocene vegetation of the humid tropics of northeastern Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 399412.CrossRefGoogle Scholar
Knorr, G., and Lohmann, G. (2003). Southern ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature 424, 532536.Google Scholar
Kukla, G., McManus, J.F., Rousseau, D.-D., and Chuine, I. (1997). How long and how stable was the last interglacial?. Quaternary Science Reviews 16, 605612.Google Scholar
Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H.W., and Stoner, J. (2004). Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, 19591962.CrossRefGoogle ScholarPubMed
Lea, D.W., Pak, D.K., Peterson, L.C., and Hughen, K.A. (2003). Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science 301, 13611364.CrossRefGoogle ScholarPubMed
Ledru, M.-P. (1993). Quaternary environmental and climatic changes in Central Brazil. Quaternary Research 39, 9098.Google Scholar
Ledru, M.-P., and Mourguiart, P. (2001). Late Glacial vegetation records in the Americas and climatic implications.Markgraf, V. Interhemispheric Climate Linkages Academic Press, San Diego.371390.CrossRefGoogle Scholar
Ledru, M.-P., Bertaux, J., Sifeddine, A., and Suguio, K. (1998a). )Absence of last glacial maximum records in lowland tropical forests. Quaternary Research 49, 233237.CrossRefGoogle Scholar
Ledru, M.-P., Salgado-Labouriau, M.L., and Lorscheitter, M.L. (1998b). )Vegetation dynamics in southern and central Brazil during the last 10,000 yr B.P.. Review of Palaeobotany and Palynology 99, 131142.CrossRefGoogle Scholar
Ledru, M.-P., Campello, R.C., Landim Dominguez, J.M., Martin, L., Mourguiart, P., Sifeddine, A., and Turcq, B. (2001). Late-glacial cooling in Amazonia inferred from pollen at Lagoa do Caçó, northern Brazil. Quaternary Research 55, 4756.CrossRefGoogle Scholar
Ledru, M.-P., Mourguiart, P., Ceccantini, G., Turcq, B., and Sifeddine, A. (2002). Tropical climates in the game of two hemispheres revealed by abrupt climatic change. Geology 30, 275278.2.0.CO;2>CrossRefGoogle Scholar
M.-P., Ledru, G.T., Ceccantini, L.C.R., Pessenda, J.A., Lopez, S.E.M., Gouveia, A.S., Ribeiro,in press.Millennial-scale climatic changes in a northern cerrado since the last glacial maximum. Quaternary Science Reviews.Google Scholar
Marengo, J.A., Cornejo, A., Satyamurty, P., Nobre, C., and Sea, W. (1997). Cold surges in tropical and extratropical South America: the strong event in June 1994. Monthly Weather Review 125, 27592786.Google Scholar
Markgraf, V. (1989a). )Paleoclimates in central and South America since 18,000 BP based on pollen and lake-level records. Quaternary Science Reviews 8, 124.CrossRefGoogle Scholar
Markgraf, V. (1989b). )Reply to C.J. Heusser's “Southern Westerlies during Last Glacial Maximum”. Quaternary Research 31, 426432.Google Scholar
Markgraf, V., Dodson, J., Kershaw, P.A., Mc Glone, M.S., and Nicholls, N. (1992). Evolution of late Pleistocene and Holocene climates in the circum-South Pacific land areas. Climate Dynamics 6, 193211.Google Scholar
Markgraf, V., McGlone, M., and Hope, G. (1995). Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems–A southern perspective. Trends in Ecology and Evolution 10, 143147.Google Scholar
Markgraf, V., Baumgartner, T.R., Bradbury, J.P., Diaz, H.F., Dunbar, R.B., Luckman, B.H., Seltzer, G.O., Swetnam, T.W., and Villalba, R. (2000). Paleoclimate reconstruction along the Pole–Equator–Pole transect of the Americas (PEP 1). Quaternary Science Reviews 19, 125140.Google Scholar
Martin, L., Flexor, J.-M., and Suguio, K. (1995). Vibrotestemunhador leve: construção, utilização e potencialidades. Revista de l'Instituto de Geociências São Paulo 16, 5966.Google Scholar
Mc Glone, M.S., Kershaw, P.A., and Markgraf, V. (1992). El Niño/Southern Oscillation climatic variability in Australasian and South American paleoenvironmental records.Diaz, H.F., Markgraf, V. El Niño: Historical and paleoclimatic aspects of the Southern Oscillation Cambridge Univ. Press, Cambridge.435462.Google Scholar
Meadows, M.E., and Baxter, A.J. (1999). Late Quaternary palaeoenvironments of the Southwestern Cape, South Africa: a regional synthesis. Quaternary International 57/58, 193206.Google Scholar
Moreno, P.I., Jacobson, G.L., Lowell, T.V., and Denton, G.H. (2001). Interhemispheric climate links revealed by a late-glacial cooling episode in southern Chile. Nature 409, 804808.Google Scholar
Oliveira Filho, A.T., and Fontes, M.A.L. (2000). Patterns of floristic differentiation among Atlantic forest in south-eastern Brazil, and the influence of climate. Biotropica 32, 793810.CrossRefGoogle Scholar
Partridge, T.C., and Scott, L. (2000). Lakes and pans.Partridge, T.C., Maud, R.R. The Cenozoic of Southern Africa Oxford Univ. Press, New York.145161.Google Scholar
Petit, J.-R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M.L., Chappellaz, J., Davis, M.E., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostock ice core, Antarctica. Nature 399, 429436.Google Scholar
Pezza, A.B., and Ambrizzi, T. (2003). Variability of Southern Hemisphere cyclone and anticyclone behavior: further analysis. Journal of Climate 16, 10751083.Google Scholar
Riccomini, C., Turcq, B., Martin, L., Moreira, M.Z., and Lorscheitter, M.L. (1991). The Colônia astrobleme, Brasil. Revista do Instituto de Geociências, São Paulo 12, 8794.Google Scholar
Rind, D. (1998). Latitudinal temperature gradients and climate change. Journal of Geophysical Research 103, 59435971.CrossRefGoogle Scholar
Rind, D. (2000). Relating paleoclimate data and past temperature gradients: some suggestive rules. Quaternary Science Reviews 19, 381390.CrossRefGoogle Scholar
Scott, L. (1999). Vegetation history and climate in the savanna biome South Africa since 190,000 ka: a comparison of pollen data from the Tswaing Crater (The Pretoria Saltpan) and Wonderkrater. Quaternary International 57/58, 215223.Google Scholar
Steig, E.J., Brook, E.J., White, J.W.C., Sucher, C.M., Bender, M.L., Lehman, S.J., Morse, D.L., Waddington, E.D., and Clow, G.D. (1999). Synchronous climate changes in Antarctica and the North Atlantic. Science 282, 9295.CrossRefGoogle Scholar
Stieglitz, J.L. (2004). Hemispheric asynchrony of abrupt climatic change. Science 304, 19191920.CrossRefGoogle Scholar
Stocker, T.F. (2003). South dials north. Nature 424, 496499.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., and van der Plicht, J. (1998). INTCAL 98 Radiocarbonage calibration 24,000–0 cal BP. Radiocarbon 40, 11271151.Google Scholar
Sylvestre, F. (2002). A high-resolution diatom reconstruction between 21,000 and 17,000 14C yr BP from the southern Bolivian Altiplano (18–23°S). Journal of Paleolimnology 27, 4557.Google Scholar
Wainer, I., Clauzet, G., Ledru, M.-P., Brady, E., and Otto-Bliesner, B. (2005). Last glacial maximum in South America: proxies and model results. Geophysical Research Letters 32, 8 L08702 doi: 10.1029/2004GL021244Google Scholar