Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T21:11:09.807Z Has data issue: false hasContentIssue false

Palaeolimnology of Lake Zeribar, Iran, and its Climatic Implications

Published online by Cambridge University Press:  20 January 2017

Krystyna Wasylikowa*
Affiliation:
W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
Andrzej Witkowski
Affiliation:
University of Szczecin, Department of Palaeoceanology, Wąska 13, 71-415 Szczecin, Poland
Adam Walanus
Affiliation:
University of Rzeszów, Reytana 16, 35-310 Rzeszów, Poland
Andrzej Hutorowicz
Affiliation:
Inland Fisheries Institute, Department of Hydrobiology, M. Oczapowskiego 10, 10-719 Olsztyn, Poland
Stefan W. Alexandrowicz
Affiliation:
Polish Academy of Arts and Sciences, Sławkowska 17, 31-016 Kraków, Poland
Jerzy J. Langer
Affiliation:
Adam Mickiewicz University, Laboratory for Materials Physicochemistry and Nanotechnology, Grunwaldzka 10, 63-100 Śrem, Poland
*
Corresponding author. Fax: +48 12 421 97 90. E-mail address:[email protected] (K. Wasylikowa).

Abstract

Lake Zeribar sediments covering the time period of the last 25,000 years were examined for the contents of seeds, fruits, Characeae, diatoms, and molluscs. Reconstructions of the variations in the lake water level, salinity, and trophy suggest a sequence of climatic changes. Three pronounced stages of low and varying lake-water level occurred ca. 17,700–15,400, 12,600–12,000, and 10,000–6000 cal yr BP. Some water-level changes were correlated with variations in salinity. The most pronounced increase of salinity occurred 17,700–15,700 and 12,600–12,000 cal yr BP, and less distinct ones occurred about 6400–5900 and 2500 cal yr BP. Diatom assemblages indicated a strong increase of lake trophy ca. 20,200 cal yr BP. Between 6000 and 5000 cal yr BP diatoms characteristic of eutrophy increased in core 63J, and at about 3200 cal yr BP a distinct increase in mesotrophic forms occurred in core 70B. The changes in the occurrence of various organisms indicate increased temperatures about 21,000 cal yr BP, between 15,400 and 12,600, about 12,000, and about 11,700 cal yr BP. The reduced occurrence or disappearance of some of them suggest temperature decreases about 17,700–15,400 and 12,600–12,000 cal yr BP.

Type
Special Issue Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrowicz, S.W. Holozäne Molluskengemeinschaften von Qasr el-Sagha. Mitteilungen des Deutschen Archäologischen Instituts. Abteilung Kairo 42, (1986). 2534.Google Scholar
Alexandrowicz, S.W. Bithynia tentaculata (Linnaeus, 1758) as an indicator of age and deposition environment of Quaternary sediments. Folia Malacologica 7, 2 (1999). 7988.CrossRefGoogle Scholar
Alexandrowicz, S.W. A mollusc thanatocenosis in the Nile River Valley near Wadi Halfa (N Sudan). Folia Malacologica 9, 1 (2001). 3943.Google Scholar
Bard, E., Rostek, F., Turon, J.-L., and Gendreau, S. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic. Science 289, (2000). 13211324.Google Scholar
Bennike, O., Jensen, J.B., and Lemke, W. Late Quaternary records of Najas spp. (Najadaceae) from the southwestern Baltic Region. Review of Palaeobotany and Palynology 114, (2001). 259267.CrossRefGoogle ScholarPubMed
Blazencic, J., and Temnisova-Topalova, D. Charophyta from Babylon (Republic of Iraq). Kryptogamie, Algologia 12, (1991). 289300.Google Scholar
Böttcher, U., Ergenzinger, P.J., Jaeckel, S.H., and Kaiser, K. Quartäre Seebildungen und ihre Mollusken-Inhalte im Tibesti-Gebirge und seinen Rahmenbereichen der zentralen Sahara. Zeitschrift Geomorphology 16, 2 (1972). 182234.Google Scholar
Brown, D.S. Freshwater Snails of Africa and their Medical Importance. (1980). Taylor and Francis Ltd., London.Google Scholar
Dąmbska, I. Charophyta-ramienice. Starmach, K. Flora Słodkowodna Polski, Państwowe Wydawnictwo Naukowe, Warszawa. (1964). Google Scholar
Dąmbska, I. Zbiorowiska ramienic Polski. PTPN, Wydz. Mat.-Przyr.. Prace Komisji Biologicznej 31, 3 (1966). 176.Google Scholar
Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W., and Paulissen, D. Zeigerwerte von Pflanzen in Mitteleuropa. (1992). Erich Goltze KG, Göttingen.Google Scholar
Fritz, S.C., Cumming, B.F., Gasse, F., and Laird, K.R. Diatoms as indicators of hydrologic and climatic change in saline lakes. Stoermer, E.F., and Smol, J.P. The Diatoms: Applications for Environmental and Earth Sciences. (1999). Cambridge Univ. Press, London. 4172.Google Scholar
Gardner, E.W. Some lacustrine Mollusca from the Fayum Depression. Memoires de I'Institut d'Egypte 18, (1932). 3123.Google Scholar
Guerlesquin, M. Recherches sur Chara zeylanica Klein ex Wild. (Charophycees) d'Afrique occidentale. Revue Algologique, nouvelle serie 10, (1971). 231247.Google Scholar
Harris, D.R., (2002). (1999). Development of the agro-pastoral economy in the Fertile Crescent during the Pre-Pottery Neolithic period. In Capper, R.T.J., Bottema, S. (Eds.), The Dawn of Farming in the Near East. Studies in Early Near Eastern Production, Subsistence, and Environment 6, Berlin, Ex Oriente., pp. 6783.Google Scholar
Hass, J.N. First identification key for charophyte oospores from central Europe. European Journal of Phycology 29, (1994). 227235.Google Scholar
Hejný, S., (1960). Ökologische Charakteristik der Wasser- und Sumpfpflanzen in den Slowakischen Tiefebenen (Donau- und Theissgebiet). Verlag der Slowakischen Akademie der Wissenschaften, Bratislava.Google Scholar
Hirsz, E., (2004). Struktura populacji Chara tomentosa L. w jeziorach Pojezierza Mazurskiego. Praca doktorska Uniwersytetu Warmińsko-Mazurskiego, Olsztyn. (unpubl. doctor dissertation).Google Scholar
Huckriede, R., and Wiesemann, G. Der jungpleistocäne Pluvial-See von Al Jafr und weitere Daten zum Quartär Jordaniens. Geologica et Palaeontologica 2, (1968). 7395.Google Scholar
Hutchinson, G.E., and Cogwill, U.M. Chemical examination of a core from Lake Zeribar, Iran. Science 140, (1963). 6870.Google Scholar
Julin, E., and Luther, H. Om bloming och fruktsättning hos Ceratophyllum demersum i Fennoskandien. Botaniska Notiser 112, 3 (1959). 321338.Google Scholar
Kaiser, K., Kempf, E.K., Leroi-Gourhan, A., and Schütt, H. Quatärstratigraphische Untersuchungen aus dem Damascus Becken und seiner Umgebung. Zeitschrift für Geomorphologie 17, 3 (1973). 263353.Google Scholar
Kłosowski, S., Szczerbowski, J.A., and Bartel, R. Flora in lakes Tharthar, Habbaniya and Razzazah. Archives Polish Fisheries 9, Suppl. 1 (2001). 7591.Google Scholar
Krammer, K., and Lange-Bertalot, H. Bacillariophyceae: 1. Teil: Naviculaceae. Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D. Süßwasserflora von Mitteleuropa. 2. (1986). G. Fischer, Stuttgart and New York.Google Scholar
Krammer, K., and Lange-Bertalot, H. Bacillariophyceae: 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D. Süßwasserflora von Mitteleuropa: 2. (1988). G. Fischer, Stuttgart and New York.Google Scholar
Krause, W. Charales (Charophyceae). Ettl, H., Gärtner, G., Hernig, H., and Mollenhauer, D. Süsswasserflora von Mitteleuropa. (1997). Gustav Fisher, Jena-Stuttgart-Lübeck-Ulm.Google Scholar
Lecointe, C., Coste, M., and Prygiel, J. “Omnidia”: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269/270, (1993). 509513.Google Scholar
Ling, Y.-J., Xie, S.-L., and Langangen, A. Charales of China. Nova Hedwigia 71, (2000). 6994.Google Scholar
Löffler, H. Beiträge zur Kenntnis der Iranischen Binnengewässer II. International Review of Hydrobiology 46, (1961). 309406.Google Scholar
Luther, H. Verbreitung und Ökologie der höheren Wasserpflanzen im Brackwasser der Ekenäs-Gegend in Südfinnland: 2. Spezieller Teil. Acta Botanica Fennica 50, (1951). 1370.Google Scholar
Martin, F. Pleistocene molluscs from the Sudanese Nubia. Wendorf, F. The Prehistory of Nubia. (1968). Southern Methodist Univ. Press, Dallas.Google Scholar
Megard, R.O. Late-Quaternary Cladocera of Lake Zeribar, Western Iran. Ecology 48, (1967). 179189.Google Scholar
Podbielkowski, Z., Tomaszewicz, H., (1996). Zarys hydrobotaniki. Wydawnictwo Naukowe PWN, Warszawa.Google Scholar
Proctor, V.W. Characeae of Llano Estacado (Texas and adjacent New Mexico) playas. Journal of Biogeography 17, (1990). 7584.Google Scholar
Roberts, N. Did prehistoric landscape management retard the post-glacial spread of woodland in Southwest Asia?. Antiquity 76, (2002). 100210010.Google Scholar
Roberts, N., Reed, J.M., Leng, J.M., Kuzucuoğlu, C., Fontugne, M., Bertaux, J., Woldring, H., Bottema, S., Black, S., Hunt, E., and Karabıyıkoğlu, M. The tempo of Holocene climatic change in the eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. The Holocene 11, (2001). 721736.Google Scholar
Salisbury, E. The pioneer vegetation of exposed muds and its biological features. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 259, 829 (1970). 207255.Google Scholar
Schmidt, D., van de Weyer, K., Krause, W., Kies, L., Garniel, A., Geissler, A., Gutowski, A., Samietz, R., Schütz, W., Vahle, H.-Ch., Vöge, M., Wolff, P., and Melzer, A. Rote Liste der Armleuchteralgen (Charophyceae) Deutschlands. Sch.-R. f. Vegetationskde 28, (1996). 547576.Google Scholar
Snoeijs, P. Intercalibration and distribution of diatom species in the Baltic Sea. The Baltic Marine Biologist Publication, 1. 16a. (1993). Opulus Press, Uppsala.Google Scholar
Snoeijs, P., and Vilbaste, S. Intercalibration and distribution of diatom species in the Baltic Sea. The Baltic Marine Biologist Publication, 2. 16b. (1994). Opulus Press, Uppsala.Google Scholar
Snyder, J.A., Wasylik, K., Fritz, S.C., Wright, H.E. Jr. Diatom-based conductivity reconstruction and palaeoclimatic interpretation of a 40-ka record from Lake Zeribar, Iran. The Holocene 11, (2001). 737745.Google Scholar
Soulié-Märsche, I. Extant gyrogonite populations of Chara zeylanica and Chara haitensis: implications for taxonomy and palaeocology. Australian Journal of Botany 47, (1999). 371382.CrossRefGoogle Scholar
Steenberg, C.M. Furesoens molluskenfauna. Kongelige Danske Videnskabers Selskabs Skrivter 8, (1917). 78200.Google Scholar
Stevens, L.R., Wright, H.E. Jr., and Ito, E. Changes in seasonality of climate during the Late-glacial and Holocene at Lake Zeribar, Iran. The Holocene 11, (2001). 747755.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., v. d. Plicht, J., and Spurk, M. INTCAL98 Radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40, (1998). 10411083.CrossRefGoogle Scholar
Sviridenko, B.F. Flora and vegetation of reservoirs of North Kazakhstan. (2000). Omsk Pedagogical University, Omsk.Google Scholar
Tchernov, E. Freshwater molluscs of the Sinai Peninsula. Israel Journal of Zoology 20, (1971). 209211.Google Scholar
Troels-Smith, J. Karakterisering af løse jordarter. Danmarks Geologiske Undersøgelse 4/3, 10 (1955). 3873.Google Scholar
van Zeist, W., and Bottema, S. Palynological investigations in Western Iran. Palaeohistoria 19, (1977). 1985.Google Scholar
van Zeist, W., and Bottema, S. Late Quaternary vegetation of the Near East. Beihefte zum Tübinger Atlas des Vorderen Orients, Reihe A 18, (1991). 1156.Google Scholar
van Zeist, W., Wright, H.E. Jr. Preliminary pollen studies at Lake Zeribar, Zagros Mountains, Southwestern Iran. Science 140, (1963). 6567.CrossRefGoogle ScholarPubMed
Walanus, A., and Nalepka, D. POLPAL program for counting pollen grains, diagrams plotting and numerical analysis. Proceedings 5th EPPC. Acta Palaeobotanica vol. 2, (1999). 659661. (Supplement 2) Google Scholar
Wasmund, E. Biocoenose und Thanatocoenose. Archiv für Hydrobiologie 17, (1926). 1116.Google Scholar
Wasylik, K. Notes on the freshwater algae of Iran. Fragmenta Floristica et Geobotanica 21, (1975). 369397.Google Scholar
Wasylikowa, K. Late Quaternary plant macrofossils from Lake Zeribar, Western Iran. Review of Palaeobotany and Palynology 2, (1967). 313318.CrossRefGoogle Scholar
Wasylikowa, K. Paleoecology of Lake Zeribar, Iran, in the Pleniglacial, Late Glacial, and Holocene reconstructed from plant macrofossils. The Holocene 15, (2005). 720735.Google Scholar
Wasylikowa, K., and Walanus, A. Timing of aquatic and marsh plant successions in various parts of Lake Zeribar, Iran, during the Late Glacial and Holocene. Acta Palaeobotanica 44, (2004). 129140.Google Scholar
Wick, L., Lemke, G., and Sturm, M. Evidence of Late Glacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. The Holocene 13, (2003). 665675.Google Scholar
Wright, H.E. Jr., and Thorpe, J.L. Climatic change and the origin of agriculture in the Near East. Mackay, A., Battarbee, R., Birks, J., and Oldfield, F. Global Change in the Holocene. (2003). Arnold, London. 4962.Google Scholar