Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T06:36:36.306Z Has data issue: false hasContentIssue false

Oldest Dryas hydroclimate reorganization in the eastern Iberian Peninsula after the iceberg discharges of Heinrich Event 1

Published online by Cambridge University Press:  13 January 2021

Carlos Pérez-Mejías*
Affiliation:
Institute of Global Environmental Change, Xi'an Jiaotong University, 710049 Xi'an, China
Ana Moreno
Affiliation:
Department of Geoenvironmental Processes and Global Change, Pyrenean Institute of Ecology–CSIC, Avda. Montañana 1005, 50059Zaragoza, Spain
Juan Bernal-Wormull
Affiliation:
Department of Geoenvironmental Processes and Global Change, Pyrenean Institute of Ecology–CSIC, Avda. Montañana 1005, 50059Zaragoza, Spain
Isabel Cacho
Affiliation:
Department of Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona. C/Martí Franques s/n, 08028Barcelona, Spain
M. Cinta Osácar
Affiliation:
Earth Sciences Department, University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
R. Lawrence Edwards
Affiliation:
Department of Earth and Environmental Sciences, University of Minnesota, 116 Church Street SE, Minneapolis, Minnesota55455, USA
Hai Cheng
Affiliation:
Institute of Global Environmental Change, Xi'an Jiaotong University, 710049 Xi'an, China State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, 710049 Xi'an, China Key Laboratory of Karst Dynamics, MLR, Institute of Karst Geology, CAGS, Guilin, China
*
*Corresponding author at: Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China. Email address: [email protected].

Abstract

This study examines the first precisely dated and temporally highly resolved speleothem record from Iberia that reconstructs the Oldest Dryas (OD). The onset of cold conditions in the study area, contemporary with the beginning of Heinrich Stadial 1, is recorded at 18.13 ± 0.08 ka, with a pronounced drop of 6.1‰ in δ13C in 250 years. Henceforth, stadial conditions depict a period of instability in the Atlantic Meridional Overturning Circulation, peaking in freshwater input from iceberg melting during Heinrich Event 1. Anomalies in the δ18O of the stalagmite attributed to such a freshwater event are found from 16.17 to 15.89 ka. Such absolute dates given to the onset of the OD in Iberia and to the main iceberg discharges are reliable anchor points for non-absolute chronologies. Two periods are identified in the OD: OD-a (18.13–16.17 ka) is characterized by wet conditions and a faster growth rate, and OD-b (15.89–14.81 ka) exhibits relative dryness and a slower growth rate. The sudden release of fresh water is considered to be the reason for the disruption of rainfall patterns in eastern Iberia. The present study also highlights the existence of heterogeneous and complex hydrological conditions during the OD in Iberia when both Atlantic and Mediterranean realms are considered.

Type
Thematic Set: Heinrich Events
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ait Brahim, Y., Cheng, H., Sifeddine, A., Wassenburg, J.A., Cruz, F.W., Khodri, M., Sha, L., et al. , 2017. Speleothem records decadal to multidecadal hydroclimate variations in southwestern Morocco during the last millennium. Earth and Planetary Science Letters 476, 110.CrossRefGoogle Scholar
Álvarez-Solas, J., Montoya, M., Ritz, C., Ramstein, G., Charbit, S., Dumas, C., Nisancioglu, K., Dokken, T., Ganopolski, A., 2011. Heinrich Event 1: an example of dynamical ice-sheet reaction to oceanic changes. Climate of the Past 7, 12971306.CrossRefGoogle Scholar
Álvarez-Solas, J., Robinson, A., Montoya, M., Ritz, C., 2013. Iceberg discharges of the last glacial period driven by oceanic circulation changes. Proceedings of the National Academy of Sciences 110, 1635016354.CrossRefGoogle ScholarPubMed
Atsawawaranunt, K., Comas-Bru, L., Amirnezhad Mozhdehi, S., Deininger, M., Harrison, S.P., Baker, A., Boyd, M., et al. , 2018. The SISAL database: a global resource to document oxygen and carbon isotope records from speleothems. Earth System Science Data 10, 16871713.CrossRefGoogle Scholar
Ausín, B., Hodell, D.A., Cutmore, A., Eglinton, T.I., 2020. The impact of abrupt deglacial climate variability on productivity and upwelling on the southwestern Iberian margin. Quaternary Science Reviews 230, 106139CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., 2000. Timing and hydrological conditions of Sapropel events in the eastern Mediterranean, as evident from speleothems, Soreq cave, Israel. Chemical Geology 169, 145156.CrossRefGoogle Scholar
Bard, E., Rostek, F., Turon, J.L., Gendreau, S., 2000. Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science 289, 13211324.CrossRefGoogle ScholarPubMed
Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., Thornalley, D., 2015. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333336.CrossRefGoogle Scholar
Bazzicalupo, P., Maiorano, P., Girone, A., Marino, M., Combourieu-Nebout, N., Incarbona, A., 2018. High-frequency climate fluctuations over the last deglaciation in the Alboran Sea, western Mediterranean: evidence from calcareous plankton assemblages. Palaeogeography. Palaeoclimatology, Palaeoecology 506, 226241.CrossRefGoogle Scholar
Beaudouin, C., Jouet, G., Suc, J.-P., Berné, S., Escarguel, G., 2007. Vegetation dynamics in southern France during the last 30 ky BP in the light of marine palynology. Quaternary Science Reviews 26, 10371054.CrossRefGoogle Scholar
Becker, D., Verheul, J., Zickel, M., Willmes, C., 2015. LGM Paleoenvironment of Europe: Map. https://doi.org/10.5880/SFB806.15.CrossRefGoogle Scholar
Beghin, P., Charbit, S., Kageyama, M., Combourieu-Nebout, N., Hatté, C., Dumas, C., Peterschmitt, J.-Y., 2015. What drives LGM precipitation over the western Mediterranean? A study focused on the Iberian Peninsula and northern Morocco. Climate Dynamics 46, 26112631.CrossRefGoogle Scholar
Bernal-Wormull, J.L., Moreno, A., Pérez-Mejías, C., Bartolomé, M., Aranburu, A., Arriolabengoa, M., Iriarte, E., et al. , under review. Immediate temperature response in northern Iberia to last deglacial changes in the North Atlantic.Google Scholar
Bond, G., Showers, W., Elliot, M., Evans, M., Lotti, R., Hajdas, I., Bonani, G., Johnson, S., 1999. The North Atlantic's 1–2 kyr climate rhythm: relation to Heinrich events, Dansgaard/Oeschger cycles and the Little Ice Age. In: Alley, R.B., Clark, P.U., Keigwin, L., Webb, R. (Eds.), Mechanisms of Global Climate Change at Millennial Time Scales. Geophysical Monograph. American Geophysical Union, Washington DC, pp. 3558.CrossRefGoogle Scholar
Breitenbach, S.F.M., Rehfeld, K., Goswami, B., Baldini, J.U.L., Ridley, H.E., Kennett, D.J., Prufer, K.M., et al. , 2012. Constructing proxy records from age models (COPRA). Climate of the Past 8, 17651779.CrossRefGoogle Scholar
Broecker, W.S., 1994. Massive iceberg discharges as triggers for global climate change. Nature 372, 421424.CrossRefGoogle Scholar
Broecker, W.S., Putnam, A.E., 2012. How did the hydrologic cycle respond to the two-phase mystery interval? Quaternary Science Reviews 57, 1725.CrossRefGoogle Scholar
Cacho, I., Grimalt, J.O., Canals, M., Sbaffi, L., Shackleton, N.J., Schönfeld, J., Zahn, R., 2001. Variability of the western Mediterranean sea surface temperatures during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanography 16, 4052.CrossRefGoogle Scholar
Cacho, I., Grimalt, J.O., Pelejero, C., Canals, M., Sierro, F.J., Flores, J.A., Shackleton, N.J., 1999. Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea temperatures. Paleoceanography 14, 698705.CrossRefGoogle Scholar
Chapman, M.R., Shackleton, N.J., Zhao, M., Eglinton, G., 1996. Faunal and alkenone reconstructions of subtropical North Atlantic surface hydrography and paleotemperature over the last 28 kyr. Paleoceanography 11, 343357.CrossRefGoogle Scholar
Charles, C.D., Rind, D., Jouzel, J., Koster, R.D., Fairbanks, R.G., 1994. Glacial-interglacial changes in moisture sources for Greenland: influences on the ice core record of climate. Science 263, 508511.CrossRefGoogle ScholarPubMed
Cheng, H., Edwards, L.R., Hoff, J., Gallup, C.D., Richards, D.A., Asmerom, Y., 2000. The half-lives of uranium-234 and thorium-230. Chemical Geology 169, 1733.CrossRefGoogle Scholar
Cheng, H., Edwards, L.R., Shen, C.-C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., et al. , 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371–372, 8291.CrossRefGoogle Scholar
Cheng, H., Edwards, R.L., Broecker, W.S., Denton, G.H., Kong, X., Wang, Y., Zhang, R., Wang, X., 2009. Ice Age terminations. Science 326, 248252.CrossRefGoogle ScholarPubMed
Cheng, H., Sinha, A., Verheyden, S., Nader, F.H., Li, X.L., Zhang, P.Z., Yin, J.J., et al. , 2015. The climate variability in northern Levant over the past 20,000 years. Geophysical Research Letters 42, 86418650.CrossRefGoogle Scholar
Collatz, G.J., Berry, J.A., Clark, J.S., 1998. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C 4 grasses: present, past, and future. Oecologia 114, 441454.CrossRefGoogle Scholar
Columbu, A., Drysdale, R., Capron, E., Woodhead, J., De Waele, J., Sanna, L., Hellstrom, J., Bajo, P., 2017. Early last glacial intra-interstadial climate variability recorded in a Sardinian speleothem. Quaternary Science Reviews 169, 391397.CrossRefGoogle Scholar
Combourieu Nebout, N., Peyron, O., Dormoy, I., Desprat, S., Beaudouin, C., Kotthoff, U., Marret, F., 2009. Rapid climatic variability in the west Mediterranean during the last 25000 years from high resolution pollen data. Climate of the Past 5, 503521.CrossRefGoogle Scholar
Combourieu Nebout, N., Turon, J.L., Zahn, R., Capotondi, L., Londeix, L., Pahnke, K., 2002. Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 k.y. Geology 30, 863866.2.0.CO;2>CrossRefGoogle Scholar
Cortesi, N., Gonzalez-Hidalgo, J.C., Trigo, R.M., Ramos, A.M., 2014. Weather types and spatial variability of precipitation in the Iberian Peninsula. International Journal of Climatology 34, 26612677.CrossRefGoogle Scholar
Costas, S., Naughton, F., Goble, R., Renssen, H., 2016. Windiness spells in SW Europe since the last glacial maximum. Earth and Planetary Science Letters 436, 8292.CrossRefGoogle Scholar
Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus 16, 436468.CrossRefGoogle Scholar
Dansgaard, W., Clausen, H.B., Gundestrup, N., Hammer, C.U., Johnsen, S.F., Kristinsdottir, P.M., Reeh, N., 1982. A new Greenland deep ice core. Science 218, 12731277.CrossRefGoogle ScholarPubMed
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., et al. , 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.CrossRefGoogle Scholar
Denton, G.H., Alley, R.B., Comer, G.C., Broecker, W.S., 2005. The role of seasonality in abrupt climate change. Quaternary Science Reviews 24, 11591182.CrossRefGoogle Scholar
Denton, G.H., Anderson, R.F., Toggweiler, J.R., Edwards, R.L., Schaefer, J.M., Putnam, A.E., 2010. The last glacial termination. Science 328, 16521656.CrossRefGoogle ScholarPubMed
Deplazes, G., Lückge, A., Peterson, L.C., Timmermann, A., Hamann, Y., Hughen, K.A., Röhl, U., et al. , 2013. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nature Geoscience 6, 213217.CrossRefGoogle Scholar
Dorale, J.A., Edwards, R.L., Ito, E., González, L.A., 1998. Climate and vegetation history of the midcontinent from 75 to 25 ka: a speleothem record from Crevice cave, Missouri, USA. Science 282, 18711874.CrossRefGoogle ScholarPubMed
Drysdale, R.N., 2006. Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone. Geology 34, 101104.CrossRefGoogle Scholar
Drysdale, R.N., Hellstrom, J.C., Zanchetta, G., Fallick, A.E., Sanchez Goni, M.F., Couchoud, I., McDonald, J., Maas, R., Lohmann, G., Isola, I., 2009. Evidence for obliquity forcing of Glacial Termination II. Science 325, 15271531.CrossRefGoogle ScholarPubMed
Eynaud, F., Malaizé, B., Zaragosi, S., de Vernal, A., Scourse, J., Pujol, C., Cortijo, E., et al. , 2012. New constraints on European glacial freshwater releases to the North Atlantic Ocean. Geophysical Research Letters 39.CrossRefGoogle Scholar
Fairchild, I.J., Borsato, A., Tooth, A.F., Frisia, S., Hawkesworth, C.J., Huang, Y.M., McDermott, F., Spiro, B., 2000. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chemical Geology 166, 255269.CrossRefGoogle Scholar
Fairchild, I.J., Smith, C., Baker, A., Fuller, L., Spötl, C., Mattey, D., McDermott, F., 2006. Modification and preservation of environmental signals in speleothems. Earth-Science Reviews 75, 105153.CrossRefGoogle Scholar
Fairchild, I.J., Treble, P.C., 2009. Trace elements in speleothems as recorders of environmental change. Quaternary Science Reviews 28, 449468.CrossRefGoogle Scholar
Finsinger, W., Tinner, W., van der Knaap, W.O., Ammann, B., 2006. The expansion of hazel (Corylus avellana L.) in the southern Alps: a key for understanding its early Holocene history in Europe? Quaternary Science Reviews 25, 612631.CrossRefGoogle Scholar
Fleitmann, D., Cheng, H., Badertscher, S., Edwards, L.R., Mudelsee, M., Göktürk, O.M., Fankhauser, A., et al. , 2009. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophysical Research Letters 36, 15.CrossRefGoogle Scholar
Fletcher, W.J., Sánchez Goñi, M.F., 2008. Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quaternary Research 70, 451464.CrossRefGoogle Scholar
Fricke, H.C., O'Neil, J.R., 1999. The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth and Planetary Science Letters 170, 181196.CrossRefGoogle Scholar
Frigola, J., Moreno, A., Cacho, I., Canals, M., Sierro, F.J., Flores, J.A., Grimalt, J.O., 2008. Evidence of abrupt changes in western Mediterranean deep water circulation during the last 50kyr: a high-resolution marine record from the Balearic Sea. Quaternary International 181, 88104.CrossRefGoogle Scholar
Frisia, S., 2015. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies. International Journal of Speleology. 44, 116.Google Scholar
Frisia, S., Borsato, A., Fairchild, I.J., McDermott, F., 2000. Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and southwestern Ireland. Journal of Sedimentary Research 70, 11831196.CrossRefGoogle Scholar
Frisia, S., Borsato, A., Hellstrom, J., 2018. High spatial resolution investigation of nucleation, growth and early diagenesis in speleothems as exemplar for sedimentary carbonates. Earth-Science Reviews 178, 6891.CrossRefGoogle Scholar
Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., Pons-Branchu, E., Hamelin, B., 2001. Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter: implications for 13C variations in speleothems. Geochimica et Cosmochimica Acta 65, 34433457.CrossRefGoogle Scholar
Genty, D., Blamart, D., Ghaleb, B., Plagnes, V., Causse, Ch., Bakalowicz, M., Zouari, K., Chkir, N., Hellstrom, J., Wainer, K., 2006. Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles: comparison with Chinese and South Hemisphere stalagmites. Quaternary Science Reviews 25, 21182142.CrossRefGoogle Scholar
Genty, D., Combourieu-Nebout, N., Peyron, O., Blamart, D., Wainer, K., Mansuri, F., Ghaleb, B., et al. , 2010. Isotopic characterization of rapid climatic events during OIS3 and OIS4 in Villars cave stalagmites (SW-France) and correlation with Atlantic and Mediterranean pollen records. Quaternary Science Reviews 29, 27992820.CrossRefGoogle Scholar
González-Sampériz, P., Valero-Garcés, B.L., Moreno, A., Jalut, G., García-Ruiz, J.M., Martí-Bono, C., Delgado-Huertas, A., Navas, A., Otto, T., Dedoubat, J.J., 2006. Climate variability in the Spanish Pyrenees during the last 30,000 yr revealed by the El Portalet sequence. Quaternary Research 66, 3852.CrossRefGoogle Scholar
Grinsted, A., Moore, J.C., Jevrejeva, S., 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics 11, 561566.CrossRefGoogle Scholar
Hall, I.R., Moran, S.B., Zahn, R., Knutz, P.C., Shen, C.-C., Edwards, R.L., 2006. Accelerated drawdown of meridional overturning in the late-glacial Atlantic triggered by transient pre-H event freshwater perturbation. Geophysical Research Letters 33, L16616.CrossRefGoogle Scholar
Heinrich, H., 1988. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130.000 years. Quaternary Research 29, 142152.CrossRefGoogle Scholar
Hemming, S.R., 2004. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global imprint. Reviews of Geophysics 42, 143.CrossRefGoogle Scholar
Hodell, D.A., Nicholl, J.A., Bontognali, T.R.R., Danino, S., Dorador, J., Dowdeswell, J.A., Einsle, J., et al. , 2017. Anatomy of Heinrich Layer 1 and its role in the last deglaciation. Paleoceanography 32, 284303.CrossRefGoogle Scholar
Hofstetter, S., Tinner, W., Valsecchi, V., Carraro, G., Conedera, M., 2006. Late glacial and Holocene vegetation history in the Insubrian southern Alps: new indications from a small-scale site. Vegetation History and Archaeobotany 15, 8798.CrossRefGoogle Scholar
Ivanovic, R.F., Gregoire, L.J., Burke, A., Wickert, A.D., Valdes, P.J., Ng, H.C., Robinson, L.F., et al. , 2018. Acceleration of northern ice sheet melt induces AMOC slowdown and northern cooling in simulations of the early last deglaciation. Paleoceanography and Paleoclimatology 33, 807824.CrossRefGoogle Scholar
Jalut, G., Turu i Michels, V., Dedoubat, J.-J., Otto, T., Ezquerra, J., Fontugne, M., Belet, J.M., et al. , 2010. Palaeoenvironmental studies in NW Iberia (Cantabrian range): vegetation history and synthetic approach of the last deglaciation phases in the western Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 330350.CrossRefGoogle Scholar
Johnson, K.R., Hu, C., Belshaw, N.S., Henderson, G.M., 2006. Seasonal trace-element and stable-isotope variations in a Chinese speleothem: the potential for high resolution paleomonsoon reconstruction. Earth and Planetary Science Letters 244, 394407.CrossRefGoogle Scholar
Kageyama, M., Combourieu Nebout, N., Sepulchre, P., Peyron, O., Krinner, G., Ramstein, G., Cazet, J.-P., 2005. The last glacial maximum and Heinrich Event 1 in terms of climate and vegetation around the Alboran Sea: a preliminary model-data comparison. Comptes Rendus Geoscience 337, 983992.CrossRefGoogle Scholar
Kim, S.-T., O'Neil, J.R., 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, 34613475.CrossRefGoogle Scholar
Lachniet, M.S., 2009. Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews 28, 412432.CrossRefGoogle Scholar
Lebreiro, S.M., Voelker, A.H.L., Vizcaino, A., Abrantes, F.G., Alt-Epping, U., Jung, S., Thouveny, N., Gràcia, E., 2009. Sediment instability on the Portuguese continental margin under abrupt glacial climate changes (last 60 kyr). Quaternary Science Reviews 28, 32113223.CrossRefGoogle Scholar
Lechleitner, F.A., Amirnezhad-Mozhdehi, S., Columbu, A., Comas-Bru, L., Labuhn, I., Pérez-Mejías, C., Rehfeld, K., 2018. The potential of speleothems from western Europe as recorders of regional climate: a critical assessment of the SISAL database. Quaternary 1, 30.CrossRefGoogle Scholar
Lechleitner, F.A., Breitenbach, S.F.M., Cheng, H., Plessen, B., Rehfeld, K., Goswami, B., Marwan, N., Eroglu, D., Adkins, J., Haug, G., 2017. Climatic and in-cave influences on δ18O and δ13C in a stalagmite from northeastern India through the last deglaciation. Quaternary Research 88, 458471.CrossRefGoogle Scholar
Li, C., Battisti, D.S., 2008. Reduced Atlantic storminess during last glacial maximum: evidence from a coupled climate model. Journal of Climate 21, 35613579.CrossRefGoogle Scholar
Litt, T., Brauer, A., Goslar, T., Merkt, J., Balaga, K., Müller, H., Ralska-Jasiewiczowa, M., Stebich, M., Negendank, J.F.W., 2001. Correlation and synchronisation of late glacial continental sequences in northern central Europe based on annually laminated lacustrine sediments. Quaternary Science Reviews 20, 12331249.CrossRefGoogle Scholar
Ludwig, P., Shao, Y., Kehl, M., Weniger, G.-C., 2018. The last glacial maximum and Heinrich Event I on the Iberian Peninsula: a regional climate modelling study for understanding human settlement patterns. Global and Planetary Change 170, 3447.CrossRefGoogle Scholar
Marcott, S.A., Clark, P.U., Padman, L., Klinkhammer, G.P., Springer, S.R., Liu, Z., Otto-Bliesner, B.L., et al. , 2011. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proceedings of the National Academy of Sciences 108, 1341513419.CrossRefGoogle ScholarPubMed
Martin-Vide, J., Lopez-Bustins, J.-A., 2006. The western Mediterranean oscillation and rainfall in the Iberian Peninsula. International Journal of Climatology 26, 14551475.CrossRefGoogle Scholar
Martrat, B., Grimalt, J.O., Shackleton, N., de Abreu, L., Hutterli, M.A., Stocker, T.F., 2007. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 317, 502507.CrossRefGoogle ScholarPubMed
Martrat, B., Jimenez-Amat, P., Zahn, R., Grimalt, J.O., 2014. Similarities and dissimilarities between the last two deglaciations and interglaciations in the North Atlantic region. Quaternary Science Reviews 99, 122134.CrossRefGoogle Scholar
McManus, J., Francois, R., Gherardi, J.M., Keigwin, L., Brown-Leger, S., 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834837.CrossRefGoogle ScholarPubMed
Mickler, P.J., Stern, L.A., Banner, J.L., 2006. Large kinetic isotope effects in modern speleothems. Geological Society of America Bulletin 118, 6581.CrossRefGoogle Scholar
Millet, L., Rius, D., Galop, D., Heiri, O., Brooks, S.J., 2012. Chironomid-based reconstruction of late glacial summer temperatures from the Ech palaeolake record (French western Pyrenees). Palaeogeography, Palaeoclimatology, Palaeoecology 315–316, 8699.CrossRefGoogle Scholar
Morellón, M., Valero-Garcés, B., Vegas-Vilarrúbia, T., González-Sampériz, P., Romero, Ó., Delgado-Huertas, A., Mata, P., Moreno, A., Rico, M., Corella, J.P., 2009. Late glacial and Holocene palaeohydrology in the western Mediterranean region: the Lake Estanya record (NE Spain). Quaternary Science Reviews 28, 25822599.CrossRefGoogle Scholar
Moreno, A., Cacho, I., Canals, M., Prins, M.A., Sánchez Goñi, M.F., Grimalt, J.O., Weltje, G.J., 2002. Saharan dust transport and high latitude glacial climatic variability: the Alboran Sea record. Quaternary Research 58, 318328.CrossRefGoogle Scholar
Moreno, A., González-Sampériz, P., Morellón, M., Valero-Garcés, B.L., Fletcher, W.J., 2012. Northern Iberian abrupt climate change dynamics during the last glacial cycle: a view from lacustrine sediments. Quaternary Science Reviews 36, 139153.CrossRefGoogle Scholar
Moreno, A., Pérez-Mejías, C., Bartolomé, M., Sancho, C., Cacho, I., Stoll, H., Delgado-Huertas, A., Hellstrom, J., Edwards, R.L., Cheng, H., 2017. New speleothem data from Molinos and Ejulve caves reveal Holocene hydrological variability in northeast Iberia. Quaternary Research 88, 223233.CrossRefGoogle Scholar
Moreno, A., Stoll, H., Jiménez-Sánchez, M., Cacho, I., Valero-Garcés, B., Ito, E., Edwards, R.L., 2010. A speleothem record of glacial (25–11.6kyr BP) rapid climatic changes from northern Iberian Peninsula. Global and Planetary Change 71, 218231.CrossRefGoogle Scholar
Naafs, B.D.A., Hefter, J., Grützner, J., Stein, R., 2013. Warming of surface waters in the mid-latitude North Atlantic during Heinrich events. Paleoceanography 28, 153163.CrossRefGoogle Scholar
Naughton, F., Sánchez Goñi, M.F., Desprat, S., Turon, J.L., Duprat, J., Malaize, B., Joli, C., Cortijo, E., Drago, T., Freitas, M.C., 2007. Present-day and past (last 25 000 years) marine pollen signal off western Iberia. Marine Micropaleontology 62, 91114.CrossRefGoogle Scholar
Naughton, F., Sánchez Goñi, M.F., Kageyama, M., Bard, E., Duprat, J., Cortijo, E., Desprat, S., et al. , 2009. Wet to dry climatic trend in north-western Iberia within Heinrich events. Earth and Planetary Science Letters 284, 329342.CrossRefGoogle Scholar
Naughton, F., Sanchez Goñi, M.F., Rodrigues, T., Salgueiro, E., Costas, S., Desprat, S., Duprat, J., et al. , 2016. Climate variability across the last deglaciation in NW Iberia and its margin. Quaternary International 414, 922.CrossRefGoogle Scholar
Ng, H.C., Robinson, L.F., McManus, J.F., Mohamed, K.J., Jacobel, A.W., Ivanovic, R.F., Gregoire, L.J., Chen, T., 2018. Coherent deglacial changes in western Atlantic Ocean circulation. Nature Communications 9, 2947.CrossRefGoogle ScholarPubMed
North Greenland Ice Core Project Members, 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147151.CrossRefGoogle Scholar
Ortiz, J.E., Torres, T., Delgado, A., Llamas, J.F., Soler, V., Valle, M., Julià, R., Moreno, L., Díaz-Bautista, A., 2010. Palaeoenvironmental changes in the Padul basin (Granada, Spain) over the last 1 Ma based on the biomarker content. Palaeogeography, Palaeoclimatology, Palaeoecology 298, 286299.CrossRefGoogle Scholar
Paillard, D., Labeyrie, L., 1994. Role of the thermohaline circulation in the abrupt warming after Heinrich events. Nature 372, 162164.CrossRefGoogle Scholar
Palacios, D., de Andrés, N., Gómez-Ortiz, A., García-Ruiz, J.M., 2017a. Evidence of glacial activity during the Oldest Dryas in the mountains of Spain. Geological Society, London, Special Publications 433, 87110.CrossRefGoogle Scholar
Palacios, D., García-Ruiz, J.M., Andrés, N., Schimmelpfennig, I., Campos, N., Léanni, L., Aumaître, G., Bourlès, D.L., Keddadouche, K., 2017b. Deglaciation in the central Pyrenees during the Pleistocene–Holocene transition: timing and geomorphological significance. Quaternary Science Reviews 162, 111127.CrossRefGoogle Scholar
Pérez-Mejías, C., Moreno, A., Sancho, C., Bartolomé, M., Stoll, H., Cacho, I., Cheng, H., Edwards, R.L., 2017. Abrupt climate changes during Termination III in southern Europe. Proceedings of the National Academy of Sciences 114, 1004710052.CrossRefGoogle ScholarPubMed
Pérez-Mejías, C., Moreno, A., Sancho, C., Bartolomé, M., Stoll, H., Osácar, M.C., Cacho, I., Delgado-Huertas, A., 2018. Transference of isotopic signal from rainfall to dripwaters and farmed calcite in Mediterranean semi-arid karst. Geochimica et Cosmochimica. Acta 243, 6698.CrossRefGoogle Scholar
Pérez-Mejías, C., Moreno, A., Sancho, C., Martín-García, R., Spötl, C., Cacho, I., Cheng, H., Edwards, R.L., 2019. Orbital-to-millennial scale climate variability during Marine Isotope Stages 5 to 3 in northeast Iberia. Quaternary Science Reviews 224, 105946.CrossRefGoogle Scholar
Rahmstorf, S., 1994. Rapid climate transitions in a coupled ocean–atmosphere model. Nature 372, 8285.CrossRefGoogle Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., et al. , 2014. A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.CrossRefGoogle Scholar
Regattieri, E., Zanchetta, G., Isola, I., Bajo, P., Perchiazzi, N., Drysdale, R.N., Boschi, C., Hellstrom, J.C., Francke, A., Wagner, B., 2018. A MIS 9/MIS 8 speleothem record of hydrological variability from Macedonia (F.Y.R.O.M.). Global and Planetary Change 162, 3952.CrossRefGoogle Scholar
Renold, M., Raible, C.C., Yoshimori, M., Stocker, T.F., 2010. Simulated resumption of the North Atlantic meridional overturning circulation: slow basin-wide advection and abrupt local convection. Quaternary Science Reviews 29, 101112.CrossRefGoogle Scholar
Repschläger, J., Weinelt, M., Kinkel, H., Andersen, N., Garbe-Schönberg, D., Schwab, C., 2015. Response of the subtropical North Atlantic surface hydrography on deglacial and Holocene AMOC changes. Paleoceanography 30, 456476.CrossRefGoogle Scholar
Roche, D., Paillard, D., Cortijo, E., 2004. Constraints on the duration and freshwater release of Heinrich Event 4 through isotope modelling. Nature 432, 379382.CrossRefGoogle ScholarPubMed
Rodríguez-Arévalo, J., Díaz-Teijeiro, M.F., Castaño, S., 2011. Modelling and mapping oxygen-18 isotope composition of precipitation in Spain for hydrologic and climatic applications. In: Isotopes in Hydrology, Marine Ecosystems and Climate Change Studies, Vol. 1. International Atomic Energy Agency, Monaco, pp. 171177.Google Scholar
Roucoux, K.H., de Abreu, L., Shackleton, N.J., Tzedakis, C., 2005. The response of NW Iberian vegetation to North Atlantic climate oscillations during the last 65 kyr. Quaternary Science Reviews 24, 16371653.CrossRefGoogle Scholar
Rozanski, K., Araguás-Araguás, L., Gonfiantini, R., 1993. Isotopic patterns in modern global precipitation. In: Swart, P.K, Lohmann, K.C., Mckenzie, J., Savin, S. (Eds.), Climate Change in Continental Isotopic Records. Geophysical Monograph Series 78, pp. 136.Google Scholar
Samartin, S., Heiri, O., Lotter, A.F., Tinner, W., 2012. Climate warming and vegetation response after Heinrich Event 1 (16 700–16 000 cal yr BP) in Europe south of the Alps. Climate of the Past 8, 19131927.CrossRefGoogle Scholar
Sánchez Goñi, M.F., Cacho, I., Turon, J., Guiot, J., Sierro, F., Peypouquet, J., Grimalt, J., Shackleton, N., 2002. Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. Climate Dynamics 19, 95105.Google Scholar
Sánchez Goñi, M.F., Eynaud, F., Turon, J.L., Shackleton, N.J., 1999. High-resolution palynological record off Iberian margin: direct land-sea correlation for the last interglacial complex. Earth and Planetary Science Letters 171, 123137.CrossRefGoogle Scholar
Sánchez Goñi, M.F., Turon, J.L., Eynaud, F., Gendreau, S., 2000. European climatic response to millenial-scale changes in the atmosphere-ocean system during the last glacial period. Quaternary Research 54, 394403.CrossRefGoogle Scholar
Scholz, D., Frisia, S., Borsato, A., Spötl, C., Fohlmeister, J., Mudelsee, M., Miorandi, R., Mangini, A., 2012. Holocene climate variability in north-eastern Italy: potential influence of the NAO and solar activity recorded by speleothem data. Climate of the Past 8, 13671383.CrossRefGoogle Scholar
Schrag, D.P., Adkins, J.F., McIntyre, K., Alexander, J.L., Hodell, D.A., Charles, C.D., McManus, J.F., 2002. The oxygen isotopic composition of seawater during the last glacial maximum. Quaternary Science Reviews, 21, 331342.CrossRefGoogle Scholar
Schulz, M., Mudelsee, M., 2002. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers & Geosciences 28, 421426.CrossRefGoogle Scholar
Sierro, F.J., Hodell, D.A., Curtis, J.H., Flores, J.A., Reguera, I., Colmenero-Hidalgo, E., Bárcena, M.A., et al. , 2005. Impact of iceberg melting on Mediterranean thermohaline circulation during Heinrich events. Paleoceanography 20, PA2019.CrossRefGoogle Scholar
Skinner, L.C., Elderfield, H., 2007. Rapid fluctuations in the deep North Atlantic heat budget during the last glacial period: rapid deepwater temperature change. Paleoceanography 22, PA1205.CrossRefGoogle Scholar
Stanford, J.D., Rohling, E.J., Bacon, S., Roberts, A.P., Grousset, F.E., Bolshaw, M., 2011. A new concept for the paleoceanographic evolution of Heinrich Event 1 in the North Atlantic. Quaternary Science Reviews 30, 10471066.CrossRefGoogle Scholar
Stanford, J.D., Rohling, E.J., Hunter, S.E., Roberts, A.P., Rasmussen, S.O., Bard, E., McManus, J., Fairbanks, R.G., 2006. Timing of meltwater pulse 1a and climate responses to meltwater injections. Paleoceanography 21, PA4103.CrossRefGoogle Scholar
Stríkis, N.M., Chiessi, C.M., Cruz, F.W., Vuille, M., Cheng, H., de Souza Barreto, E.A., Mollenhauer, G., et al. , 2015. Timing and structure of Mega-SACZ events during Heinrich Stadial 1. Geophysical Research Letters 42, 54775484A.CrossRefGoogle Scholar
Sturm, C., Vimeux, F., Krinner, G., 2007. Intraseasonal variability in South America recorded in stable water isotopes. Journal of Geophysical Research: Atmospheres 112, D20118.CrossRefGoogle Scholar
Thouveny, N., Carcaillet, J., Moreno, E., Leduc, G., Nérini, D., 2004. Geomagnetic moment variation and paleomagnetic excursions since 400 kyr BP: a stacked record from sedimentary sequences of the Portuguese margin. Earth and Planetary Science Letters 219, 377396.CrossRefGoogle Scholar
Toucanne, S., Soulet, G., Freslon, N., Silva Jacinto, R., Dennielou, B., Zaragosi, S., Eynaud, F., Bourillet, J.-F., Bayon, G., 2015. Millennial-scale fluctuations of the European ice sheet at the end of the last glacial, and their potential impact on global climate. Quaternary Science Reviews 123, 113133.CrossRefGoogle Scholar
Toucanne, S., Zaragosi, S., Bourillet, J.F., Naughton, F., Cremer, M., Eynaud, F., Dennielou, B., 2008. Activity of the turbidite levees of the Celtic-Armorican margin (Bay of Biscay) during the last 30,000 years: imprints of the last European deglaciation and Heinrich events. Marine Geology 247, 84103.CrossRefGoogle Scholar
Tremaine, D.M., Froelich, P.N., Wang, Y., 2011. Speleothem calcite farmed in situ: modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system. Geochimica et Cosmochimica Acta 75, 49294950.CrossRefGoogle Scholar
Valero-Garcés, B.L., Zeroual, E., Kelts, K., 1998. Arid phases in the western Mediterranean region during the last glacial cycle reconstructed from lacustrine records. In: Benito, G., Baker, V.R., Gregory, K.J. (Eds.), Paleohydrology and Environmental Change, Wiley, London, pp. 6780.Google Scholar
Vegas, J., Ruiz-Zapata, B., Ortiz, J.E., Galán, L., Torres, T., García-Cortés, Á., Gil-García, M.J., Pérez-González, A., Gallardo-Millán, J.L., 2010. Identification of arid phases during the last 50 cal. ka BP from the Fuentillejo maar-lacustrine record (Campo de Calatrava volcanic field, Spain). Journal of Quaternary Science 25, 10511062.CrossRefGoogle Scholar
Vescovi, E., Ravazzi, C., Arpenti, E., Finsinger, W., Pini, R., Valesecchi, V., Wick, L., Ammann, B., Tinner, W., 2007. Interactions between climate and vegetation during the late glacial period as recorded by lake and mire sediments archives in northern Italy and southern Switzerland. Quaternary Science Reviews 26, 16501669.CrossRefGoogle Scholar
Voelker, A., Lebreiro, S., Schonfeld, J., Cacho, I., Erlenkeuser, H., Abrantes, F., 2006. Mediterranean outflow strengthening during Northern Hemisphere coolings: a salt source for the glacial Atlantic? Earth and Planetary Science Letters 245, 3955.CrossRefGoogle Scholar
von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., Johnsen, S.J., 1999. A mid-European decadal isotope-climate record from 15,500 to 5000 years BP. Science 284, 16541657.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z., Wu, J.Y., Shen, C.C., Dorale, J.A., 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu cave, China. Science 294, 23452348.CrossRefGoogle ScholarPubMed
Weniger, G.-C., de Andrés-Herrero, M., Bolin, V., Kehl, M., Otto, T., Potì, A., Tafelmaier, Y., 2019. Late glacial rapid climate change and human response in the westernmost Mediterranean (Iberia and Morocco). PLOS ONE 14, e0225049.CrossRefGoogle Scholar
Wick, L., 2004. Full to lateglacial vegetation and climate change and evidence of glacial refugia in the south-eastern Alps. In: Ubera, J.L. (Ed.), XI International Palynological Congress (IPC). University of Cordoba, Granada, Spain, p. 529.Google Scholar
Wiedner, E., Scholz, D., Mangini, A., Polag, D., Mühlinghaus, C., Segl, M., 2008. Investigation of the stable isotope fractionation in speleothems with laboratory experiments. Quaternary International 187, 1524.CrossRefGoogle Scholar
Xu, D., Lu, H., Chu, G., Liu, L., Shen, C., Li, F., Wang, C., Wu, N., 2019. Synchronous 500-year oscillations of monsoon climate and human activity in northeast Asia. Nature Communications 10, 4105.CrossRefGoogle ScholarPubMed
Zanchetta, G., Drysdale, R.N., Hellstrom, J., Fallick, A.E., Isola, I., Gagan, M.K., Pareschi, M.T., 2007. Enhanced rainfall in the western Mediterranean during deposition of sapropel S1: stalagmite evidence from Corchia cave (central Italy). Quaternary Science Reviews 26, 279286.CrossRefGoogle Scholar
Zaragosi, S., Eynaud, F., Pujol, C., Auffret, G.A., Turon, J.-L., Garlan, T., 2001. Initiation of the European deglaciation as recorded in the northwestern Bay of Biscay slope environments (Meriadzek terrace and Trevelyan escarpment): a multi-proxy approach. Earth and Planetary Science Letters 188, 493507.CrossRefGoogle Scholar