Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T19:04:55.890Z Has data issue: false hasContentIssue false

New speleothem data from Molinos and Ejulve caves reveal Holocene hydrological variability in northeast Iberia

Published online by Cambridge University Press:  13 July 2017

Ana Moreno*
Affiliation:
Department of Geoenvironmental Processes and Global Change, Pyrenean Institute of Ecology – CSIC, Avenida Montañana 1005 50059, Zaragoza, Spain
Carlos Pérez-Mejías
Affiliation:
Department of Geoenvironmental Processes and Global Change, Pyrenean Institute of Ecology – CSIC, Avenida Montañana 1005 50059, Zaragoza, Spain Earth Sciences Department, University of Zaragoza, C/Pedro Cerbuna 12 50009, Zaragoza, Spain
Miguel Bartolomé
Affiliation:
Department of Geoenvironmental Processes and Global Change, Pyrenean Institute of Ecology – CSIC, Avenida Montañana 1005 50059, Zaragoza, Spain Earth Sciences Department, University of Zaragoza, C/Pedro Cerbuna 12 50009, Zaragoza, Spain
Carlos Sancho
Affiliation:
Earth Sciences Department, University of Zaragoza, C/Pedro Cerbuna 12 50009, Zaragoza, Spain
Isabel Cacho
Affiliation:
CRG Marine Geosciences, Department of Stratigraphy, Paleontology and Marine Geosciences, Faculty of Geology, University of Barcelona, C/Martí i Franqués, s/nº 08028, Barcelona, Spain
Heather Stoll
Affiliation:
Department of Geology, University of Oviedo, C/Arias de Velasco, s/nº 33005 Oviedo, Spain Geological Institute, NO G59, Department of Earth Sciences, Sonneggstrasse 5, ETH 8092, Zurich, Switzerland
Antonio Delgado-Huertas
Affiliation:
Stable Isotope Biogeochemistry Laboratory, IACT-CSIC, Avda. de Las Palmeras nº 4 18100, Armilla, Granada, Spain
John Hellstrom
Affiliation:
School of Earth Sciences, The University of Melbourne, VIC 3010, Australia
R. Lawrence Edwards
Affiliation:
Department of Earth Sciences, University of Minnesota, 310 Pillsbury Drive SE, Minneapolis, Minnesota 55455, USA
Hai Cheng
Affiliation:
Department of Earth Sciences, University of Minnesota, 310 Pillsbury Drive SE, Minneapolis, Minnesota 55455, USA State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xian 710075, China Institute of Global Environmental Change, Xian Jiaotong University, Xian 710049, China
*
*Corresponding author at: Department of Geoenvironmental Processes and Global Change, Pyrenean Institute of Ecology – CSIC, Avenida Montañana 1005, 50059 Zaragoza, Spain. E-mail address: [email protected] (A. Moreno).

Abstract

New speleothem records from northeastern Iberian caves provide data to explore the climatic patterns during the Holocene. We present δ13C and Mg/Ca from three speleothems from two different caves located in the Iberian Range allowing replication of the climatic signal for several millennia. Through the integration of those stalagmites covering since the Holocene onset to 2 ka, the early Holocene (11.7–8.5 ka) appears as the wettest interval. A marked change towards aridity is observed during the middle Holocene (8.5–4.8 ka) and an increase of humidity afterwards (4.8–2 ka). This three-part pattern, contrasting with other Iberian sequences, seems to be associated with the different role that seasonality has played in the response of different proxies (or records) to changes in water availability. Interpreting our speleothem records as changes in winter-spring precipitation along the Holocene allows reconciling previous data on hydrological variability from the western Mediterranean borderlands.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aranbarri, J., González-Sampériz, P., Valero-Garcés, B., Moreno, A., Gil-Romera, G., Sevilla-Callejo, M., García-Prieto, E., et al. 2014. Rapid climatic changes and resilient vegetation during the Lateglacial and Holocene in a continental region of south-western Europe. Global and Planetary Change 114, 5065.Google Scholar
Belli, R., Frisia, S., Borsato, A., Drysdale, R., Hellstrom, J., Zhao, J. X., Spötl, C., 2013. Regional climate variability and ecosystem responses to the last deglaciation in the northern hemisphere from stable isotope data and calcite fabrics in two northern Adriatic stalagmites. Quaternary Science Reviews 72, 146158.Google Scholar
Camarero, J.J., Gazol, A., Tardif, J.C., Conciatori, F., 2015. Attributing forest responses to global-change drivers: limited evidence of a CO 2 fertilization effect in Iberian pine growth. Journal of Biogeography 42, 22202233.CrossRefGoogle Scholar
Carrión, J.S., 2002. Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quaternary Science Reviews 21, 20472066.Google Scholar
Carrión, J.S., Andrade, A., Bennett, K.D., Navarro, C., Munuera, M., 2001a. Crossing forest thresholds: inertia and collapse in a Holocene sequence from south-central Spain. The Holocene 11, 635653.Google Scholar
Carrión, J.S., Fernández, S., González-Sampériz, P., Gil-Romera, G., Badal, E., Carrión-Marco, Y., López-Merino, L., López-Sáez, J.A., Fierro, E., Burjachs, F., 2010. Expected trends and surprises in the Lateglacial and Holocene vegetation history of the Iberian Peninsula and Balearic Islands. Review of Palaeobotany and Palynology 162, 458475.CrossRefGoogle Scholar
Carrión, J.S., Munuera, M., Dupré, M., Andrade, A., 2001b. Abrupt vegetation changes in the Segura Mountains of southern Spain throughout the Holocene. Journal of Ecology 89, 783797.Google Scholar
Carrión, J.S., van Geel, B., 1999. Fine-resolution Upper Weichselian and Holocene palynological record from Navarrés (Valencia, Spain) and a discussion about factors of Mediterranean forest succession. Review of Palaeobotany and Palynology 106, 209236.CrossRefGoogle Scholar
Cheng, H., Edwards, R.L., Shen, C-C., Woodhead, J., Hellstrom, J., Wang, Y.J., Kong, X.G., Spötl, C., Wang, X.F., Alexander, Jr, E.C., 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371, 8291.Google Scholar
Constantin, S., Bojar, A.-V., Lauritzen, S.-E., Lundberg, J., 2007. Holocene and Late Pleistocene climate in the sub-Mediterranean continental environment: A speleothem record from Poleva Cave (Southern Carpathians, Romania). Palaeogeography, Palaeoclimatology, Palaeoecology 243, 322338.Google Scholar
Davis, B.A.S., Stevenson, A.C., 2008. The 8.2 ka event and Early-Mid Holocene forests, fires and flooding in the Central Ebro Desert, NE Spain. Quaternary Science Reviews 26, 16951712.Google Scholar
de Menocal, P., Ortiz, J., Guilderson, T.P., Adkins, J.F., Sarnthein, M., Baker, L., Yarunsiky, M., 2000. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 19, 347361.Google Scholar
Domínguez-Villar, D., Fairchild, I.J., Baker, A., Wang, X., Edwards, L.R., Cheng, H., 2009. Oxygen isotope precipitation anomaly in the North Atlantic region during the 8.2 ka event. Geology 37, 10951098.CrossRefGoogle Scholar
Domínguez-Villar, D., Wang, X., Cheng, H., Martín-Chivelet, J., Edwards, R.L., 2008. A high-resolution late Holocene speleothem record from Kaite Cave, northern Spain: d18O variability and possible causes. Quaternary International 187, 4051.Google Scholar
Domínguez-Villar, D., Wang, X., Krklec, K., Cheng, H., Edwards, R.L., 2017. The control of the tropical North Atlantic on Holocene millennial climate oscillations. Geology 45, 303306. doi: 10.1130/G38573.1 Google Scholar
Dreybrodt, W., Scholz, D., 2011. Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite. Geochimica et Cosmochimica Acta 75, 734752.Google Scholar
Fairchild, I.J., Baker, A., 2012. Speleothem Science: From Process to Past Environments. John Wiley-Blackwell, Oxford.CrossRefGoogle Scholar
Fairchild, I.J., Treble, P.C., 2009. Trace elements in speleothems as recorders of environmental change. Quaternary Science Reviews 28, 449468.Google Scholar
Fletcher, W.J., Debret, M., Goñi, M.F.S., 2013. Mid-Holocene emergence of a low-frequency millennial oscillation in western Mediterranean climate: Implications for past dynamics of the North Atlantic atmospheric westerlies. The Holocene 23, 153166.Google Scholar
Fohlmeister, J., 2012. A statistical approach to construct composite climate records of dated archives. Quaternary Geochronology 14, 4856.CrossRefGoogle Scholar
Fohlmeister, J., Schröder-Ritzrau, A., Scholz, D., Spötl, C., Riechelmann, D.F.C., Mudelsee, M., Wackerbarth, A., Gerdes, A., Riechelmann, S., Immenhauser, A., Richter, D.K., Mangini, A., 2012. Bunker Cave stalagmites: an archive for central European Holocene climate variability. Climate of the Past 8, 17511764.Google Scholar
Franco-Múgica, F., García-Antón, M., Maldonado-Ruíz, J., Morla-Juaristi, C., Sainz-Ollero, H., 2005. Ancient pine forest on inland dunes in the Spanish northern meseta. Quaternary Research 63, 114.Google Scholar
Frigola, J., Moreno, A., Cacho, I., Canals, M., Sierro, F.J., Flores, J.A., Grimalt, J.O., Hodell, D.A., Curtis, J.H., 2007. Holocene climate variability in the western Mediterranean region from a deepwater sediment record. Paleoceanography 22, doi:10.1029/2006PA001307.Google Scholar
Frisia, S., Borsato, A., Fairchild, I.J., McDermott, F., 2000. Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and southwestern Ireland. Journal of Sedimentary Research 70, 11831196.Google Scholar
García-Alix, A., Jiménez-Moreno, G., Anderson, R., Jiménez Espejo, F., Delgado Huertas, A., 2012. Holocene environmental change in southern Spain deduced from the isotopic record of a high-elevation wetland in Sierra Nevada. Journal of Paleolimnology 48, 471484.Google Scholar
Genty, D., Blamart, D., Ghaleb, B., Plagnes, V., Causse, C., Bakalowicz, M., Zouari, K., et al. 2006. Timing and dynamics of the last deglaciation from European and North African delta C-13 stalagmite profiles - comparison with Chinese and South Hemisphere stalagmites. Quaternary Science Reviews 25, 21182142.Google Scholar
Gil-Romera, G., González-Sampériz, P., Lasheras-Álvarez, L., Sevilla-Callejo, M., Moreno, A., Valero-Garcés, B., López-Merino, L., et al. 2014. Biomass-modulated fire dynamics during the last glacial-interglacial transition at the Central Pyrenees (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 402. http://dx.doi.org/10.1016/j.palaeo.2014.03.015.Google Scholar
González-Sampériz, P., Aranbarri, J., Pérez-Sanz, A., Gil-Romera, G., Moreno, A., Leunda, M., Sevilla-Callejo, M., et al. 2017. Environmental and climate change in the southern Central Pyrenees since the Last Glacial Maximum: A view from the lake records. CATENA 149, 668688.Google Scholar
González-Sampériz, P., Valero-Garcés, B.L., Moreno, A., Jalut, G., García-Ruiz, J.M., Martí-Bono, C., Delgado-Huertas, A., Navas, A., Otto, T., Dedoubat, J.J., 2006. Climate variability in the Spanish Pyrenees during the last 30,000 yr revealed by the El Portalet sequence. Quaternary Research 66, 3852.CrossRefGoogle Scholar
Harrison, S.P., Digerfeldt, G., 1993. European lakes as palaeohydrological and palaeoclimatic indicators. Quaternary Science Reviews 12, 233248.Google Scholar
Hellstrom, J., 2006. U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quaternary Geochronology 1, 289295.Google Scholar
Ibáñez, E.J., Burillo, F., 1995. Arqueología: una aproximación al pasado de Molinos. Seminario de Arqueología y Etnología Turolense, Teruel, Spain.Google Scholar
Jalut, G., Amat, A.E., Bonnet, L., Gauquelin, T., Fontugne, M., 2000. Holocene climatic changes in the Western Mediterranean, from south-east France to south-east Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 160, 255290.CrossRefGoogle Scholar
Lopez-Bustins, J.-A., Martin-Vide, J., Sanchez-Lorenzo, A., 2008. Iberia winter rainfall trends based upon changes in teleconnection and circulation patterns. Global and Planetary Change 63, 171176.CrossRefGoogle Scholar
López-Merino, L., Silva Sánchez, N., Kaal, J., López-Sáez, J.A., Martínez Cortizas, A., 2012. Post-disturbance vegetation dynamics during the Late Pleistocene and the Holocene: An example from NW Iberia. Global and Planetary Change 92–93, 5870.Google Scholar
Magny, M., Bégeot, C., Guiot, J., Peyron, O., 2003. Contrasting patterns of hydrological changes in Europe in response to Holocene climate cooling phases. Quaternary Science Reviews 22, 15891596.Google Scholar
Magny, M., Combourieu Nebout, N., de Beaulieu, J.L., Bout-Roumazeilles, V., Colombaroli, D., Desprat, S., Francke, A., et al. 2013. North–south palaeohydrological contrasts in the central Mediterranean during the Holocene: tentative synthesis and working hypotheses. Climate of the Past Discussions 9, 19011967.Google Scholar
Martín-Chivelet, J., Muñoz-García, M.B., Edwards, R.L., Turrero, M.J., Ortega, A.I., 2011. Land surface temperature changes in Northern Iberia since 4000 yr BP, based on δ13C of speleothems. Global and Planetary Change 77, 112.CrossRefGoogle Scholar
Martin-Vide, J., Lopez-Bustins, J.-A., 2006. The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. International Journal of Climatology 26, 14551475.CrossRefGoogle Scholar
McMillan, E.A., Fairchild, I.J., Frisia, S., Borsato, A., McDermott, F., 2005. Annual trace element cycles in calcite-aragonite speleothems: evidence of drought in the western Mediterrranean 1200–1100 yr BP. Journal of Quaternary Science 20, 423433.Google Scholar
Morales-Molino, C., García-Antón, M., Postigo-Mijarra, J.M., Morla, C., 2013. Holocene vegetation, fire and climate interactions on the westernmost fringe of the Mediterranean Basin. Quaternary Science Reviews 59, 517.Google Scholar
Morellón, M., Valero-Garcés, B., Moreno, A., González-Sampériz, P., Mata, P., Romero, O., Maestro, M., Navas, A., 2008. Holocene palaeohydrology and climate variability in northeastern Spain: The sedimentary record of Lake Estanya (Pre-Pyrenean range). Quaternary International 181, 1531.Google Scholar
Morellón, M., Valero-Garcés, B., Vegas-Vilarrúbia, T., González-Sampériz, P., Romero, Ó., Delgado-Huertas, A., Mata, P., Moreno, A., Rico, M., Corella, J.P., 2009. Lateglacial and Holocene palaeohydrology in the western Mediterranean region: The Lake Estanya record (NE Spain). Quaternary Science Reviews 28, 25822599.Google Scholar
Moreno, A., Sancho, C., Bartolomé, M., Oliva-Urcia, B., Delgado-Huertas, A., Estrela, M.J., Corell, D., López-Moreno, J.I., Cacho, I., 2014. Climate controls on rainfall isotopes and their effects on cave drip water and speleothem growth: the case of Molinos cave (Teruel, NE Spain). Climate Dynamics 43, 221241.CrossRefGoogle Scholar
Moreno, A., Stoll, H.M., Jiménez-Sánchez, M., Cacho, I., Valero-Garcés, B., Ito, E., Edwards, L.R., 2010. A speleothem record of rapid climatic shifts during last glacial period from Northern Iberian Peninsula. Global and Planetary Change 71, 218231.Google Scholar
Muñoz Sobrino, C., Ramil-Rego, P., GóMez-Orellana, L., Díaz Varela, R., 2005. Palynological data on major Holocene climatic events in NW Iberia. Boreas 34, 381400.Google Scholar
Noronha, A.L., Johnson, K.R., Hu, C., Ruan, J., Southon, J.R., Ferguson, J.E., 2014. Assessing influences on speleothem dead carbon variability over the Holocene: Implications for speleothem-based radiocarbon calibration. Earth and Planetary Science Letters 394, 2029.Google Scholar
Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Science 11, 16331644.Google Scholar
Pérez-Sanz, A., González-Sampériz, P., Moreno, A., Valero-Garcés, B., Gil-Romera, G., Rieradevall, M., Tarrats, P., et al. 2013. Holocene climate variability, vegetation dynamics and fire regime in the central Pyrenees: the Basa de la Mora sequence (NE Spain). Quaternary Science Reviews 73, 149169.Google Scholar
Railsback, L.B., Liang, F., Vidal Romaní, J.R., Grandal-d’Anglade, A., Vaqueiro Rodríguez, M., Santos Fidalgo, L., Fernández Mosquera, D., Cheng, H., Edwards, R.L., 2011. Petrographic and isotopic evidence for Holocene long-term climate change and shorter-term environmental shifts from a stalagmite from the Serra do Courel of northwestern Spain, and implications for climatic history across Europe and the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 305, 172184.Google Scholar
Ramos-Román, M.J., Jiménez-Moreno, G., Anderson, R.S., García-Alix, A., Toney, J.L., Jiménez-Espejo, F.J., Carrión, J.S., 2016. Centennial-scale vegetation and North Atlantic Oscillation changes during the Late Holocene in the southern Iberia. Quaternary Science Reviews 143, 8495.Google Scholar
Roberts, N., Brayshaw, D., Kuzucuoglu, C., Perez, R., Sadori, L., 2011. The mid-Holocene climatic transition in the Mediterranean: Causes and consequences. The Holocene 21, 313.Google Scholar
Rudzka, D., McDermott, F., Baldini, L.M., Fleitmann, D., Moreno, A., Stoll, H., 2011. The coupled [delta]13C-radiocarbon systematics of three Late Glacial/early Holocene speleothems; insights into soil and cave processes at climatic transitions. Geochimica et Cosmochimica Acta 75, 43214339.Google Scholar
Sánchez-Goñi, M.F.S., Hannon, G.E., 1999. High-altitude vegetational pattern on the Iberian Mountain Chain (north-central Spain) during the Holocene. The Holocene 9, 3957.Google Scholar
Sancho, C., Arenas, C., Vázquez-Urbez, M., Pardo, G., Lozano, M.V., Peña-Monné, J.L., Hellstrom, J., et al. 2015. Climatic implications of the Quaternary fluvial tufa record in the NE Iberian Peninsula over the last 500 ka. Quaternary Research 84, 398414.Google Scholar
Santos, L., Vidal Romani, J.R., Jalut, G., 2000. History of vegetation during the Holocene in the Courel and Queixa Sierras, Galicia, northwest Iberian Peninsula. Journal of Quaternary Science 15, 621632.Google Scholar
Smith, A.C., Wynn, P.M., Barker, P.A., Leng, M.J., Noble, S.R., Tych, W., 2016. North Atlantic forcing of moisture delivery to Europe throughout the Holocene. Scientific Reports 6, 24745. http://dx.doi.org/10.1038/srep24745.Google Scholar
Stevenson, A.C., 2000. The Holocene forest history of the Montes Universales, Teruel, Spain. The Holocene 10, 603610.Google Scholar
Stoll, H.M., Moreno, A., Mendez-Vicente, A., Gonzalez-Lemos, S., Jimenez-Sanchez, M., Dominguez-Cuesta, M.J., Edwards, R.L., Cheng, H., Wang, X., 2013. Paleoclimate and growth rates of speleothems in the northwestern Iberian Peninsula over the last two glacial cycles. Quaternary Research 80, 284290.Google Scholar
Trigo, R.M., Pozo-Vázquez, D., Osborn, T.J., Castro-Díez, Y., Gámiz-Fortis, S., Esteban-Parra, M.J., 2004. North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. International Journal of Climatology 24, 925944.Google Scholar
Vanniere, B., Power, M.J., Roberts, N., Tinner, W., Carrion, J., Magny, M., Bartlein, P., et al. 2011. Circum-Mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500-2500 cal. BP). The Holocene 21, 5373.CrossRefGoogle Scholar
Wackerbarth, A., Scholz, D., Fohlmeister, J., Mangini, A., 2010. Modelling the δ18O value of cave drip water and speleothem calcite. Earth and Planetary Science Letters 299, 387397.Google Scholar
Walczak, I.W., Baldini, J.U.L., Baldini, L.M., McDermott, F., Marsden, S., Standish, C.D., Richards, D.A., Andreo, B., Slater, J., 2015. Reconstructing high-resolution climate using CT scanning of unsectioned stalagmites: A case study identifying the mid-Holocene onset of the Mediterranean climate in southern Iberia. Quaternary Science Reviews 127, 117128.Google Scholar
Supplementary material: File

Moreno et al. supplementary material

Figures S1-S4

Download Moreno et al. supplementary material(File)
File 1.1 MB
Supplementary material: File

Moreno et al. supplementary material

Table S1

Download Moreno et al. supplementary material(File)
File 34.7 KB