Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T06:43:16.523Z Has data issue: false hasContentIssue false

New geological framework for Western Amazonia (Brazil) and implications for biogeography and evolution

Published online by Cambridge University Press:  20 January 2017

Dilce de Fátima Rossetti*
Affiliation:
Instituto Nacional de Pesquisas Espaciais, Divisão de Sensoramiento Remoto, CP 515 São José dos Campos-SP 12245-970, Brazil
Peter Mann de Toledo
Affiliation:
Museu Paraense Emílio Goeldi, Coordenação de Pesquisa e Pós-Graduação, CP 399 Belém-PA 66077-530, Brazil
Ana Maria Góes
Affiliation:
Universidade Federal do Pará, Centro de Geociências, Campus do Guamá S/N Belém-PA, Brazil
*
*Corresponding author. Instituto Nacional de Pesquisas Espaciais-INPE, Centro de Observação da Terra, Divisão de Sensoriamento Remoto-DSR, Rua dos Astronautas 1758-Jardim da Granja-CP 515, São José dos Campos-Cep 12245-970 São Paulo Brazil. E-mail address:[email protected] (D. de Fátima Rossetti).
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Although many of the current hypotheses to explain the origin and distribution of the Amazon biodiversity has been based directly or indirectly on geological data, the reconstruction of the geological history of the Amazon region is still inadequate to analyze its relationship with the biodiversity. This work has the main goal to characterize the sedimentary successions formed in the Brazilian Amazon in the Neogene-Quaternary discussing the evolution of the depositional systems through time and analyzing their main controlling mechanisms in order to fill up this gap. Radar image interpretation, sedimentological studies, and radiocarbon dating allowed the mapping of Plio-Pleistocene to Holocene units along the Solimões-Amazonas River, Brazil. This integrated work led to the characterization of five sedimentary successions overlying Miocene deposits of the Solimões/Pebas Formation, which include the following: Içá Formation (Plio-Pleistocene), deposits Q1 (37,400–43,700 14C yr B.P.), deposits Q2 (27,200 14C yr B.P.), deposits Q3 (6730–2480 14C yr B.P.), and deposits Q4 (280–130 14C yr B.P.). These deposits occur mostly to the west of Manaus, forming NW–SE elongated belts that are progressively younger from SW to NE, indicating a subsiding basin with a depocenter that migrated to the NE. The reconstruction of the depositional history is consistent with significant changes in the landscapes. Hence, the closure of a large lake system at the end of the Miocene gave rise to the development of a Plio-Pleistocene fluvial system. This was yet very distinct from the modern drainage, with shallow, energetic, highly migrating, braided to anastomosed channels having an overall northeast outlet. This fluvial system formed probably under climatic conditions relatively drier than today's. During the early Pleistocene, there was pronounced erosion, followed by a renewed depositional phase ca. 40,000 14C yr B.P., with the development of prograding lobes and/or crevasse splays associated with a lake system (i.e., fan-delta) and/or fluvial flood plain areas. After a period of erosion, a fluvial system with eastward draining channels started to develop at around 27,000 14C yr B.P. The fluvial channels were overflooded in mid-Holocene time. This flooding is attributed to an increased period of humidity, with a peak between 5000 and 2500 14C yr B.P. The data presented herein support that, rather than being a monotonous area, the Amazonia was a place with frequent changes in landscape throughout the Neogene-Quaternary, probably as a result of climatic and tectonic factors. We hypothesize that these changes in the physical environment stressed the biota, resulting in speciation and thus had a great impact on modern biodiversity.

Type
Research Article
Copyright
University of Washington

References

Albuquerque, O.R., (1922). Reconhecimentos geológicos do Valle do Amazonas (Campanhas de 1918–1919). Boletim-Serviço Geológico e Mineralógico 3, 184.Google Scholar
Aleixo, A., (2004). Historical diversification of a terra-firme Forest bird superspecies: a phylogeographic perspective on the role of different hypotheses of Amazonian diversification. Evolution 58, 86100.Google ScholarPubMed
J.M., Ayres (1986). Uakaris and Amazonian Flooded Forests.Ph.D. dissertation.University of Cambridge, , Cambridge., .Google Scholar
Ayres, J.M., Clutton-Brock, T.H., (1992). River boundaries and species range size in Amazonian primates. American Naturalist 140, 471531.CrossRefGoogle ScholarPubMed
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P., (2001). The history of South American tropical precipitation for the past 25,000 years. Science 291, 640643.Google Scholar
Bates, H.W., (1863). The naturalist on the river Amazon. Murray, London.Google Scholar
Bates, J., (2001). Avian diversification in Amazonia: evidence for historical complexity and a vicariance model for a basin diversification pattern. Vieira, I.C., Silva, J.M.C., Oren, D.C., D'Incao, M.A., Diversidade Biológica e Cultural da Amazônia Museu Paraense Emílio Goeldi, Belém., 119139.Google Scholar
Behling, H., Costa, M.L., (2000). Holocene environmental changes from the Rio Curuá record in the Caxiuanã region, Eastern Amazon Basin. Quaternary Research 53, 369377.CrossRefGoogle Scholar
Behling, H., Hooghiemstra, H., (1998). Later Quaternary paleoecology and paleoclimatology from pollen records of the savannas of the Llanos Orientales in Colombia. Palaeogeography, Palaeoclimatology, Palaeoecology 139, 251267.CrossRefGoogle Scholar
Behling, H., Hooghiemstra, H., (1999). Environmental history of the Colombian savannas of the Llanos Orientales since the last glacial maximum from lake records El Pinal and Carimagua. Journal of Paleolimnology 21, 461476.Google Scholar
Behling, H., Hooghiemstra, H., (2000). Holocene amazon rainfores-savanna dynamics and climatic implications: high resolution pollen record from Laguna Loma Linda in eastern Colombia. Journal of Quaternary Science 15, 687695.3.0.CO;2-6>CrossRefGoogle Scholar
P.E.L., Bezerra (2003). Compartimentação morfotectônica do interflúvio Solimões-Negro.Ph.D dissertation.Universidade Federal do Pará, , Belém., .Google Scholar
Campbell, K.E., (1990). The geologic basics of biogeographic patterns in Amazonia. Peters, G., Hutterer, R., Vertebrates in the Tropics Museum Alexander Koenig, Bonn., 3343.Google Scholar
Caputo, M.V., (1991). Solimões megashear: interplate tectonics in Northwestern Brasil. Geology 19, 246249.2.3.CO;2>CrossRefGoogle Scholar
Capparella, A., (1988). Genetic variation in Neotropical birds: implications for the speciation process. Congress International Ornithology, 19 Acta Ottawa vol. 2, 16581664.Google Scholar
Costa, J.B.S., Hasui, Y., (1997). Evolução geológica da Amazônia. Costa, M.L, Angélica, S., Contribuições " Geologia da Amazônia Sociedade Brasileira de Geologia, Belém., 1519.Google Scholar
Costa, J.B.S., Bermeguy, R.L., Hasui, Y., Borges, M.S., Ferreira, C.R.P. Jr., Bezerra, P.E.L., Costa, M.L., Fernandes, J.M.G., (1996). Neotectônica da região amazônica:aspectos tectônicos, geomorfológicos e deposicionais. Geonomos 4, 2344.Google Scholar
Crowley, T.J., North, G.R.(1991). Monographs on Geology and Geophysics vol. 16, Paleoclimatology Oxford Univ. Press, UK.Google Scholar
Endler, J.A., (1977). Geographic Variation, Speciation and Clines. Princeton Univ. Press, USA., 262 pp.Google ScholarPubMed
Frailey, C.D., Lavina, E.L., Rancy, A., Souza Filho, J.P., (1988). A proposed Pleistocene/Holocene lake in the Amazon Basin and its significance to Amazonian geology and biogeography. Acta Amazonica 18, 119143.CrossRefGoogle Scholar
Góes, A.M., Rossetti, D.F., Nogueira, A.C.R., Toledo, P.M., (1990). Modelo deposicional preliminar da Formação Pirabas no nordeste do estado do Pará. Boletim do Museu Paraense Emílio Goeldi. Série Ciências da Terra 2, 315.Google Scholar
Haffer, J., (2001). Hypotheses to explain the origin of species in Amazonia. Vieira, I.C., Silva, J.M.C., Oren, D.C., D'Incao, M.A., Diversidade Biológica e Cultural da Amazônia Museu Paraense Emílio Goeldi, Belém., 45118.Google Scholar
Haffer, J., Prance, T., (2001). Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana 16, 579607.Google Scholar
Hooghiemstra, H., Van der Hammen, T., (1998). Neogene and Quaternary development of the neotropical rainforest. Earch-Science Reviews 44, 147183.Google Scholar
Hoorn, C., (1993). Marine incursion and the influence of Andean tectonics on the Miocene depositional history of Northwestern Amazonia: results of a palynological study. Palaeogeography, Palaeoclimatology, Palaeoecology 105, 267309.CrossRefGoogle Scholar
Hoorn, C. (1994). Miocene palynostratigraphy and paleoenvironments of Northwestern Amazonia.Ph.D dissertation.University of Amsterdam, , Amsterdam., .Google Scholar
Hoorn, C., Guerrero, J., Sarmiento, G.A., Lorente, M.A., (1995). Andean tectonics as a cause for drainage patterns in Miocene Northern South America. Geology 23, 237240.Google Scholar
Irion, G., (1984). Sedimentation and sediments of Amazonian rivers and evolution of the Amazonian landscape since Pliocene times. Sioli, H., The Amazon Limnology and Landscape Ecology of a Mighty Tropical River and Its Basin Junk Publishers, Dordbrecht., 201214.CrossRefGoogle Scholar
Irion, G., Muller, J., Mello, J.N., Junk, W.J., (1995). Quaternary geology of the Amazonian Lowland. Geo-Marine Letters 15, 267309.CrossRefGoogle Scholar
Latrubesse, E., Rancy, A., Ramonell, C.G., Souza Filho, J.P., (1994). A Formação Solimões: uma formação do Mio-Plioceno da Amazônia sul-ocidental. Simpósio de Geologia da Amazônia, 4. Boletim de Resumos Expandidos. Sociedade Brasileira de Geologia-Núcleo 204205.Google Scholar
Lundbergh, J.G., Marshall, L.G., Guerrero, J., Horton, B., Malabarba, M.C., Wesselingh, F., (1998). The stage of neotropical fish diversification: a history of tropical South American rivers. Malabarba, L.R., Reis, R.E., Vari, R.P., Lucena, C.A.S., Lucena, Z.M.S., Phylogeny and Diversification of Neotropical Fishes Museu de Ciências/PUCRS, Porto Alegre., 1348.Google Scholar
R.G., Maia, H.K., Godoy, H.S., Yamaguti, P.A., Moura, and F.S., Costa (1977). Projeto carvão no Alto Amazonas.Final report.CPRM, , Rio de Janeiro., .Google Scholar
Martin, L., Bertaux, J., Corrège, T., Ledru, M.P., Mourguiart, P., Sifeddine, A., Soubiès, F., Wirrmann, D., Suguio, K., Turcq, B., (1997). Astronomical forcing of contrasting rainfall changes in tropical South America between 12,400 and 8800 cal yr. B.P.. Quaternary Research 47, 117122.Google Scholar
Mayle, F.A., Burbridge, R., Killeen, T.J., (2000). Millennial-scale dynamics of Southern Amazonian rain forests. Science 290, 22912294.Google Scholar
Monsh, K.A., (1998). Miocene fish faunas from the Northwestern Amazonia basin (Colombia, Peru, Brazil) with evidence of marine incursions. Palaeogeography, Palaeoclimatology, Palaeoecology 143, 3150.Google Scholar
Mörner, N.A., (1996). Sea level variability. Zeitschrift fur Geomorphologie N.F. 102, 223232.Google Scholar
Nuttall, C.P., (1990). A review of the Tertiary non-marine molluscan faunas of the Pebasian and other inland basins of North-Western South America. Bulletin of the British Museum, Natural History. Geology 45, 165371.Google Scholar
Oliveira, A.I., Leonardos, O.H., (1943). Geologia do Brasil. Second ed.Serviço de Informação Agrícola, Rio de Janeiro, Brazil., Série didática, 2.Google Scholar
Patton, J.L., Silva, M.N., (2001). Molecular phylogenetics and the diversification of Amazonian mammals. Vieira, I.C., Silva, J.M.C., Oren, D.C., D'Incao, M.A., Diversidade Biológica e Cultural da Amazônia Museu Paraense Emílio Goeldi, Belém, Brazil., 39166.Google Scholar
Patton, J.L., Silva, M.N., Malcolm, J.R., (2000). Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia. Bulletin of the American Museum of Natural History 244, 1306.Google Scholar
Peres, C.A., Patton, J.L., Silva, M.N.F., (1996). Riverine barriers and gene flow in Amazonian saddle-back tamarins. Folia Primatologica 67, 113124.Google Scholar
Rancy, A., (2000). Paleoecologia da Amazônia. Megafauna do Pleistoceno. Universidade Federal de Santa Catarina Press, Santa Catarina, Brazil.Google Scholar
Räsänen, M.E., Salo, J.S., Kalliola, R.J., (1987). Fluvial perturbance in the Western Amazon Basin: regulation by long-term sub-Andean tectonics. Science 238, 13981401.Google Scholar
Räsänen, M.E., Salo, J.S., Jungner, H., Romero-Pittman, L., (1990). Evolution of the Western Amazon lowland relief: impact of Andean foreland dynamics. Terra Nova 2, 320332.Google Scholar
Räsänen, M.E., Linna, A.M., Santos, J.C.R., Negri, F.R., (1995). Late Miocene tidal deposits in the Amazonian foreland basin. Science 269, 386390.Google Scholar
Renaud, S., Dam, J.V., (2002). Influence of biotic and abiotic environment on dental size and shape evolution in a Late Miocene lineage of murine rodents (Teruel basin Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 184, 163175.Google Scholar
Rüegg, W., Rosenzweig, A., (1949). Contribución a la geología de las formaciones moderns de Iquitos y de la Amazonia Superior. Boletín de la Sociedad Geológica del Peru. Volume Jubilar Parte II 3, 124.Google Scholar
Rossetti, D.F., (2000). Influence of low amplitude/high frequency relative sea-level changes in a wave-dominated estuary (Miocene), São Luís Basin, Northern Brazil. Sedimentary Geology 133, 295324.Google Scholar
Rossetti, D.F., (2001). Late Cenozoic sedimentary evolution in Northeastern Pará, Brazil, within the context of sea level changes. Journal of South American Earth Sciences 14, 7789.Google Scholar
Rossetti, D.F., Góes, A.M., (2001). Imaging upper tertiary to quaternary deposits from Northern Brazil applying ground-penetrating radar. Revista Brasileira de Geociências 31, 195202.Google Scholar
Rossetti, D.F., Truckenbrodt, W., Góes, A.M., (1989). Estudo paleoambiental e estratigráfico dos Sedimentos Barreiras e Pós-Barreiras na região Bragantina, nordeste do Pará. Boletim do Museu Paraense Emílio Goeldi. Série Ciências da Terra 1, 2574.Google Scholar
Rossetti, D.F., Góes, A.M., Truckenbrodt, W., (1990). A influência marinha nos Sedimentos Barreiras. Boletim do Museu Paraense Emílio Goeldi, Série Ciências da Terra 2, 1729.Google Scholar
Rossetti, D.F., Toledo, P.M., Moraes-Santos, H.M., Santos, A.E.A. Jr., (2004). Reconstructing habitats in Central Amazonia using megafauna, sedimentology, radiocarbon and isotope analysis. Quaternary Research 61, 289300.CrossRefGoogle Scholar
Sheldon, P.R., (1996). Plus ça change—A model for stasis and evolution in different environments. Palaeogeography, Palaeoclimatology, Palaeoecology 127, 209227.Google Scholar
Talma, A.S., Vogel, J.C., (1993). A simplified approach to calibrating 14C dates. Radiocarbon 35, 317322.Google Scholar
Tuomisto, H., Ruokolainen, K., Yli-Halla, M., (2003). Dispersal, environment, and floristic variation of Western Amazonian forests. Science 299, 241244.Google Scholar
Tuomisto, H., Ruokolainen, K., Salo, J., (1993). Lago Amazonas: fact or fancy?. Acta Amazonica 33, 353361.Google Scholar
Turcq, B., Sifeddine, A., Martin, L., Absy, M.L., Soubies, F., Suguio, K., Volkmer-Ribeiro, C., (1998). Amazônia rainforest fires: a lacustrine Record of 7000 years. Ambio 27, 139142.Google Scholar
Van der Hammen, T., (2001). Paleoecology of Amazonia. Vieira, I.C.G., Silva, J.M.C., Oren, D.C, D'Incao, M.A., Diversidade biológica e cultural da Amazônia Editora do Museu Paraense Emílio Goeldi, Belém, Brazil., 1944.Google Scholar
Van der Hammen, T., Hooghiemstra, H., (2000). Neogene and Quaternary history of vegetation, climate and plant diversity in Amazonia. Quaternary Science Reviews 19, 725742.Google Scholar
Vonhof, H.B., Wesselingh, F.P., Ganssen, G.M., (1998). Reconstruction of the Miocene Western Amazonian aquatic system using molluscan isotopic signatures. Palaeogeography, Palaeoclimatology, Palaeoecology 141, 239293.Google Scholar
Vrba, E.S., (1992). Mammals as a key to evolutionary theory. Journal of Mammalogy 73, 128.Google Scholar
Wallace, A.R., (1853). A narrative of travels on the Amazon and Rio Negro. Reeve, London.Google Scholar
J., Wanderley Filho (1991). Evolução estrutural da Bacia do Amazonas e sua relação com o embasamento.Unpublished Master thesis.Universidade Federal do Pará, Belém, , Brazil., .Google Scholar
Webb, S.D., (1995). Biological implications of the Middle Miocene Amazon seaway. Science 269, 361362.CrossRefGoogle ScholarPubMed
Webb, S.D., Rancy, A., (1996). Late Cenozoic evolution of Neotropical mammal fauna. Jackson, J.B.C., Budd, A.F., Coates, A.G., Evolution and Environment in Tropical America University of Chicago Press, Chicago, USA., 335358.Google Scholar
Wesselingh, F.P., Räsänen, M.E., Irion, G., Vonhof, H.B., Kaandorp, R., Renema, W., Romero-Pittman, L., Gingras, M., (2001). Lake Pebas: a palaeoecological reconstruction of a Miocene long-lived lake complex in Western Amazonia. Cenozoic Research 1, 3581.Google Scholar