Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T06:14:45.927Z Has data issue: false hasContentIssue false

A new approach to detecting vegetation and land-use Change using high-resolution lipid biomarker records in stalagmites

Published online by Cambridge University Press:  20 January 2017

Alison J. Blyth*
Affiliation:
School of Civil Engineering and Geosciences, Drummond Building, University of Newcastle, Newcastle Upon Tyne, NE1 7RU, UK
Asfawossen Asrat
Affiliation:
Department of Earth Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
Andy Baker
Affiliation:
School of Geography, Earth and Environmental Sciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Pauline Gulliver
Affiliation:
NERC Radiocarbon Laboratory, Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride, Glasgow G75 0QF, UK
Melanie J. Leng
Affiliation:
NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK School of Geography, University of Nottingham, Nottingham, NG7 2RD, UK
Dominique Genty
Affiliation:
LSCE, UMR CEA/CNRS 1572, L'Orme des Merisiers CEA Saclay, 91191 Gif/Yvette Cedex, France
*
*Corresponding author. Present address: The McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK. Fax: +44 1223 333536.E-mail address:[email protected] (A.J. Blyth).

Abstract

A hundred-year stalagmite lipid biomarker record from Mechara, southeastern Ethiopia, is presented. The record has been recovered at a 10-yr temporal resolution, marking the first time this has been achieved in stalagmite biomarker work and providing the first opportunity to investigate the relationship between stalagmite lipid records and hydrological transport lags, a vital issue in interpreting palaeoenvironmental signals. Preserved plant-derived n-alkanes and n-alkanols show clear changes in composition over time, relating to known land-use changes in the area, particularly the expansion of agriculture in the early twentieth century. The level of environmental detail provided by this technique, combined with the long-term chronological framework offered by stalagmites, holds significant promise for the investigation of early human environments and their associated climatic and anthropogenic controls.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amblès, A., Magnoux, P., Jambu, P., Jacquesy, R., Fustec, E.(1989). Effects of addition of bentonite on the hydrocarbon fraction of a podzol (A1 Horizon).. Journal of Soil Science 40, 685694.Google Scholar
Asrat, A. (2002). Hewn churches of Central and Eastern Tigrai: A geological perspective.. Geoarchaeology 17, 649663.Google Scholar
Asrat, A., Baker, A., Umer, M., Leng, M.J., van Calsteren, P., Smith, C.(2007). A high-resolution multi-proxy stalagmite record from Mechara, Southeastern Ethiopia: Palaeohydrological implications for speleothem palaeoclimate reconstruction.. Journal of Quaternary Science 22, 5363.Google Scholar
Baker, A., Barnes, W.L., Smart, P.L.(1996). Speleothem luminescence intensity and spectral characteristics: Signal calibration and a record of palaeovegetation change.. Chemical Geology 130, 6576.Google Scholar
Baker, A., Genty, D., Dreybrodt, W., Grapes, J., Mockler, N.J.(1998). Testing theoretically predicted stalagmite growth rate with recent annually laminated stalagmites: Implications for past stalagmite deposition.. Geochimica Cosmochimica Acta 62, 393404.CrossRefGoogle Scholar
Baker, A., Asrat, A., Umer, M.(2005). Expedition report to the Mechara caves, South-eastern Ethiopia.. Speleology 1820.Google Scholar
Baker, A., Asrat, A., Fairchild, I., Leng, M.J., Wynn, P., Genty, D., Umer, M., Bryant, C.(2007). Annual resolution climate reconstruction in Ethiopia using multiple stalagmite parameters: Modern climate calibration.. Geochimica et Cosmochimica Acta 71, 29752988.Google Scholar
Baldini, J.U.L., McDermott, F., Baker, A., Baldini, L.M., Mattey, D.P., Railsback, L.B.(2005). Biomass effects on stalagmite growth and isotope ratios: A 20th century analogue from Wiltshire, England.. Earth and Planetary Science Letters 240, 486494.Google Scholar
Blyth, A.J., Farrimond, P., Jones, D.M.(2006). An optimised method for the extraction and analysis of lipid biomarkers from stalagmites.. Organic Geochemistry 37, 882890.Google Scholar
Bosellini, A., Russo, A., Fantozzi, P.L., Assefa, G., Tadesse, S.(1997). The Mesozoic succession of the Mekele Outlier (Tigrai Province Ethiopia).. Memorie di Scienze Geologiche 49, 95116.Google Scholar
Brassell, S.C., Eglinton, G., Marlowe, I.T., Pflaumann, U., Sarnthein, M.(1986). Molecular stratigraphy: A new tool for climatic assessment.. Nature 320, 129133.Google Scholar
Bray, E.E., Evans, E.D.(1961). Distribution of n-paraffins as a clue to recognition of source beds.. Geochimica Cosmochimica Acta 22, 215.Google Scholar
Bull, I.D., van Bergen, P.F., Nott, C.J., Poulton, P.R., Evershed, R.P.(2000). Organic geochemical studies of soils from the Rothamsted classical experiments�"V. The fate of lipids in different long-term experiments.. Organic Geochemistry 31, 389408.Google Scholar
Cerling, T.E. (1984). The stable isotopic composition of modern soil carbonate and its relationship to climate.. Earth and Planetary Science Letters 71, 229240.Google Scholar
Dark, P. (2006). Climate deterioration and land-use change in the first millennium BC: Perspectives from the British palynological record.. Journal of Archaeological Science 33, 13811395.CrossRefGoogle Scholar
Dimbleby, G. (1985). The Palynology of Archaeological Sites.. Academic Press, London.Google Scholar
Dorale, J.A., Edwards, R.L., Ito, E., González, L.A.(1998). Climate and vegetation history of the Midcontinent from 75 to 25 ka: A speleothem record from Crevice Cave, Missouri, USA.. Science 282, 18711874.Google Scholar
Dreybrodt, W. (1981). The kinetics of calcite deposition from thin films of natural calcareous solutions and the growth of speleothems: Revisited.. Chemical Geology 32, 237245.Google Scholar
Dreybrodt, W. (1988). Processes in Karst Systems.. Wiley, New York.Google Scholar
Edwards, R.L., Chen, J.H., Wasserburg, G.J.(1987). 238U�"234U�"232Th�"230Th systematics and the precise measurement of time over the last 500,000 years.. Earth and Planetary Science Letters 81, 175192.Google Scholar
Eglinton, G., Hamilton, R.J.(1967). Leaf epicuticular waxes.. Science 156, 13221334.Google Scholar
Einsiedl, F. (2005). Flow system dynamics and water storage of a fissured-porous karst aquifer characterised by artificial and environmental tracers.. Journal of Hydrology 312, 312321.Google Scholar
Feyisa, T.H., Aune, J.B.(2003). Khat expansion in the Ethiopian Highlands�"effects on the farming system in Habro District.. Mountain Research and Development 23, 2 185189.Google Scholar
Genty, D., Baker, A. in press.Radiocarbon in speleothems..In: S., Burns(ed) Speleothems and paleoclimate.Blackwell, Oxford.Google Scholar
Genty, D., Massault, M.(1997). Bomb 14C recorded in laminated speleothems�"Part 1: Dead carbon proportion calculation.. Radiocarbon 39, 3348.Google Scholar
Genty, D., Massault, M.(1999). Carbon transfer dynamics from bomb-14C and d13C time series of a laminated stalagmite from SW France-Modelling and comparison with other stalagmite records.. Geochimica et Cosmochimica Acta 63, 15371548.Google Scholar
Genty, D., Quinif, Y.(1996). Annually laminated sequences in the internal structure of some Belgian stalagmites�"importance for paleoclimatology.. Journal of Sedimentary Research 66, 275288.Google Scholar
Genty, D., Baker, A., Barnes, W.L.(1997). Comparaison entre les lamines luminescentes et les lamines visibles annuelles de stalagmites.. Comptes Rendus Acad. Sci. II 325, 193200.Google Scholar
Genty, D., Vokal, B., Obelic, B., Massault, M.(1998). Bomb 14C Time History Recorded in two modern stalagmites-Importance for soil organic matter dynamics and bomb 14C distribution over continents.. Earth and Planetary Science Letters 160, 795809.Google Scholar
Genty, D., Baker, A., Vokal, B.(2001). Inter and intra annual growth rates of European stalagmites.. Chemical Geology 176, 193214.Google Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., Van-Exter, S.(2003). Precise dating of Dansgaard�"Oeschger climate oscillations in western Europe from stalagmite data.. Nature 421, 833837.Google Scholar
Genty, D., Blamart, D., Ghaleb, B., Plagnes, V., Causse, Ch., Bakalowicz, M., Zouari, K., Chkir, N., Hellstrom, J., Wainer, K., Bourges, F.(2006). Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles�"comparison with Chinese and South Hemisphere stalagmites.. Quaternary Science Reviews 25, 21182142.Google Scholar
Harwood, J.L., Russell, N.J.(1984). Lipids in Plants and Microbes.. George Allen and Unwin, London.Google Scholar
Horrocks, M., Lawlor, I.(2006). Plant microfossil analysis of soils from Polynesian stonefields in South Auckland, New Zealand.. Journal of Archaeological Science 33, 200217.Google Scholar
Huang, Y., Street-Perrott, F.A., Perrott, R.A., Metzger, P., Eglinton, G.(1999). Glacial�"interglacial environmental changes inferred from molecular and compound specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya.. Geochimica et Cosmochimica Acta 63, 9 13831404.Google Scholar
Jambu, P., Amblès, A., Jaquesy, J.C., Secouet, B., Parlanti, E.(1993). Incorporation of natural alcohols from plant residues into a hydromorphic forest-podzol.. Journal of Soil Science 44, 135146.Google Scholar
Lauritzen, S.-E., Lundberg, J.(1999). Speleothems and climate: A special issue of The Holocene.. The Holocene 9, 643647.Google Scholar
Li, W.X., Lundberg, J., Dickin, A.P., Ford, D.C., Schwarcz, H.P., McNutt, R., Williams, D.(1989). High-precision mass spectrometric uranium�"Series dating of cave deposits and implications for palaeoclimatic studies.. Nature 339, 534536.Google Scholar
Machado, M.J., Pérez-González, A., Benito, G.(1998). Paleoenvironmental changes during the last 4000 yrs in the Tigray, Northern Ethiopia.. Quaternary Research 49, 312321.Google Scholar
Marseille, F., Disnar, J.R., Guillet, B., Noack, Y.(1999). n-Alkanes and free fatty acids in humus and A1 horizons of soils under beech, spruce and grass in the Massif-Central (Mont-Lozère), France.. European Journal of Soil Science 50, 433441.Google Scholar
Marzi, R., Torkelson, B.E., Olson, R.K.(1993). A revised carbon preference index.. Organic Geochemistry 20, 13031306.Google Scholar
McDermott, F. (2004). Palaeo-climate reconstruction from stable isotope variations in speleothems: A review.. Quaternary Science Reviews 23, 901918.Google Scholar
Meyers, P.A. (1997). Organic geochemical proxies of palaeoceanographic, palaeolimnologic, and palaeoclimatic processes.. Organic Geochemistry 27, 213250.Google Scholar
Mulatu, E., Kassa, H.(2001). Evolution of smallholder mixed farming systems in the Harar Highlands of Ethiopia: The shift towards trees and shrubs.. Journal of Sustainable Agriculture 18, 4 81112.Google Scholar
Nott, C.J., Xie, S., Avsejs, L.A., Maddy, D., Chambers, F.M., Evershed, R.P.(2000). n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation.. Organic Geochemistry 31, 231235.Google Scholar
Pancost, R.D., Bass, M., van Geel, B., Sinninghe-Damsté, J.S.(2002). Biomarkers as proxies for plant inputs to peats: An example from a sub-boreal ombrotrophic bog.. Organic Geochemistry 33, 675690.Google Scholar
Rieley, G., Collier, R.J., Jones, D.M., Eglinton, G.(1991). The biogeochemistry of Ellesmere Lake, U.K.�"I: Source correlation of leaf wax inputs to the sedimentary lipid record.. Organic Geochemistry 17, 901912.Google Scholar
Rousseau, L., Laafar, S., Pèpe, C., De Lumley, H.(1995). Sterols as biogeochemical markers: Results from Ensemble E of the stalagmitic floor, Grotte Du Lazaret, Nice, France.. Quaternary Science Reviews 14, 5159.Google Scholar
Slota, P.J., Jull, A.J.T., Linick, T.W., Toolin, L.J.(1987). Preparation of small samples for 14C accelerator targets by catalytic reduction of CO2.. Radiocarbon 29, 303306.Google Scholar
Tan, M., Baker, A., Genty, D., Esper, J., Cai, B.(2006). Applications of stalagmite laminae to palaeoclimate reconstructions: Comparison with dendrochronology/climatology.. Quaternary Science Reviews 25, 21032117.Google Scholar
van Bergen, P.F., Nott, C.J., Bull, I.D., Poulton, P.R., Evershed, R.P.(1998). Organic geochemical studies of soils from the Rothamsted Classical Experiments�"IV. Preliminary results from a study of the effect of soil pH on organic matter decay.. Organic Geochemistry 29, 17791795.Google Scholar
Vogel, J.C. (1983). 14C variations during the Upper Pleistocene.. Radiocarbon 25, 213218.Google Scholar
Wiesenberg, G.L.B., Schwarzbauer, J., Schmidt, M.W.I., Schwark, L.(2004). Source and turnover of organic matter in agricultural soils derived from n-alkane/n-carboxylic acid compositions and C-isotope signatures.. Organic Geochemistry 35, 13711393.Google Scholar
Woodhead, J., Hellstrom, J., Maas, R., Drysdale, R., Zanchetta, G., Devine, P., Taylor, E.(2006). U-Pb geochronology of speleothems by MC-ICPMS.. Quaternary Geochronology 1, 208221.Google Scholar
Xie, S., Yi, Y., Huang, J., Hu, C., Cai, Y., Collins, M., Baker, A.(2003). Lipid distribution in a subtropical southern China stalagmite as a record of soil ecosystem response to palaeoclimate change.. Quaternary Research 60, 340347.Google Scholar
Xu, S., Anderson, R., Bryant, C., Cook, G.T., Dougans, A., Freeman, S., Naysmith, P., Schnabel, C., Scott, E.M.(2004). Capabilities of the new SUERC 5MV AMS facility for 14C dating.. Radiocarbon 46, 5964.Google Scholar