Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T09:54:30.676Z Has data issue: false hasContentIssue false

A multiproxy record of sedimentation, pedogenesis, and environmental history in the north of West Siberia during the late Pleistocene based on the Belaya Gora section

Published online by Cambridge University Press:  09 October 2020

Vladimir Sheinkman
Affiliation:
Earth Cryosphere Institute, SB RAS, Malygina Str. 86, Tyumen625026, Russia Tyumen Industrial University, Volodarskogo Str. 38, Tyumen625000, Russia Tyumen State University, Volodarskogo Str. 6, Tyumen625003, Russia
Sergey Sedov*
Affiliation:
Earth Cryosphere Institute, SB RAS, Malygina Str. 86, Tyumen625026, Russia Tyumen State University, Volodarskogo Str. 6, Tyumen625003, Russia Instituto de Geología, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Del. Coyoacán, CdMx, C.P.04510, Mexico
Lyudmila S. Shumilovskikh
Affiliation:
Department of Palynology and Climate Dynamics, Georg-August-University Göttingen, Wilhelm-Weber-Str. 2a, 37073, Göttingen, Germany Tomsk State University, Lenina av. 36, Tomsk634050, Russia
Elena Bezrukova
Affiliation:
Tyumen Industrial University, Volodarskogo Str. 38, Tyumen625000, Russia Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk664033Russia Irkutsk Scientific Centre, Siberian Branch, Russian Academy of Sciences, Irkutsk664033Russia
Dmitriy Dobrynin
Affiliation:
Lomonosov Moscow State University (LMSU) Marine Research Centre, LMSU Science Park, Leninskie Gory, Moscow119992, Russia
Svetlana Timireva
Affiliation:
Institute of Geography, Russian Academy of Sciences, Staromonetny pereulok 29, Moscow119017, Russia
Alexey Rusakov
Affiliation:
Saint-Petersburg State University, Universitetskaya emb., 7/9, St. Petersburg199034, Russia,
Fedor Maksimov
Affiliation:
Saint-Petersburg State University, Universitetskaya emb., 7/9, St. Petersburg199034, Russia,
*
*Corresponding author at: Instituto de Geología, UNAM, Ciudad Universitaria, Del. Coyoacán, C.P. 04510, CdMx, Mexico. Email address: [email protected] (S. Sedov).

Abstract

Recent revision of the Pleistocene glaciation boundaries in northern Eurasia has encouraged the search for nonglacial geological records of the environmental history of northern West Siberia. We studied an alluvial paleosol-sedimentary sequence of the high terrace of the Vakh River (middle Ob basin) to extract the indicators of environmental change since Marine Oxygen Isotope Stage (MIS) 6. Two levels of the buried paleosols are attributed to MIS 5 and MIS 3, as evidenced by U/Th and radiocarbon dates. Palynological and pedogenetic characteristics of the lower pedocomplex recorded the climate fluctuations during MIS 5, from the Picea-Larix taiga environment during MIS 5e to the establishment of the tundra-steppe environment due to the cooling of MIS 5d or MIS 5b and partial recovery of boreal forests with Picea and Pinus in MIS 5c or MIS 5a. The upper paleosol level shows signs of cryogenic hydromorphic pedogenesis corresponding to the tundra landscape, with permafrost during MIS 3. Boulders incorporated in a laminated alluvial deposit between the paleosols are dropstones brought from the Enisei valley by ice rafting during the cold MIS 4. An abundance of eolian morphostructures on quartz grains from the sediments that overly the upper paleosol suggests a cold, dry, and windy environment during the MIS 2 cryochron.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A.A., Grosse, G., Schirrmeister, L., Kuzmina, S.A., Novenko, E.Y., Bobrov, A.A., Tarasov, P.E. et al. , 2004. Late Saalian and Eemian palaeoenvironmental history of the Bol'shoy Lyakhovsky Island (Laptev Sea region, Arctic Siberia). Boreas 33, 319348.CrossRefGoogle Scholar
Andreev, A.A., Schirrmeister, L., Tarasov, P.E., Ganopolski, A., Brovkin, V., Siegert, C., Wetterich, S., Hubberten, H.-W., 2011. Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late Quaternary inferred from pollen records. Quaternary Science Reviews 30, 21822199.CrossRefGoogle Scholar
Arkhipov, S.A., 1997. Record of late Pleistocene geological events in West Siberia. Russian Geology and Geophysics 38, 18911911.Google Scholar
Astakhov, V., 1976. Geologicheskiye dokazatel'stva tsentra pleystotsenovogo oledeniya na Karskom shel'fe [Geological proofs of the center of Pleistocene glaciations on the Kara shelf]. Doklady Akademii Nauk SSSR 231, 11781181.Google Scholar
Astakhov, V., Nazarov, D., 2010. Correlation of upper Pleistocene sediments in northern West Siberia. Quaternary Science Reviews 29, 36153629.CrossRefGoogle Scholar
Atlas Khanty-Mansiyskogo avtonomnogo okruga-Yugry [Khanty-Mansiysk Autonomous Okrug-Urga Atlas] 2004. Nature and Ecology. Vol. 2. Government of Khanti-Mansiiskii Autonomous District, Khanti-Mansiisk.Google Scholar
BDP-99 Baikal Drilling Project Members, 2005. A new Quaternary record of regional tectonic, sedimentation and paleoclimate changes from drill core BDP-99 at Posolskaya Bank, Lake Baikal. Quaternary International 136, 105121.CrossRefGoogle Scholar
Beug, H.-J., 2004. Leitfaden der Pollenbestimmung [Pollen Determination Guide]. Friedrich Pfeil, Munich.Google Scholar
Delvigne, J., Bisdom, E.B.A., Sleeman, J., Stoops, G., 1979. Olivines: their pseudomorphs and secondary products. Pedologie 29, 247309.Google Scholar
Denton, G.H., Hughes, T.J., 1981. The Last Great Ice Sheets. Wiley, New York.Google Scholar
Food and Agriculture Association, 2006. Guidelines for Soil Description. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
Grosswald, M.G., Hughes, T.J., 2002. The Russian component of an Arctic ice sheet during the last glacial maximum. Quaternary Science Reviews 21, 121146.CrossRefGoogle Scholar
Gusev, E.A., Molodkov, A.N., Streletskaya, I.D., Vasiliev, A.A., Anikina, N.Y., Bondarenko, S.A., Derevyanko, L.G. et al. , 2016. Deposits of the Kazantsevo transgression (MIS 5) in the northern Yenisei region. Russian Geology and Geophysics, 57, 586596.CrossRefGoogle Scholar
Hubberten, H.W., Andreev, A., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Henriksen, M., Hjort, C. et al. , 2004. The periglacial climate and environment in northern Eurasia during the last glaciation. Quaternary Science Reviews 23, 13331357.CrossRefGoogle Scholar
Juggins, S. 2007. Software for Ecological and Palaeoecological Data Analysis and Visualisation. Version 1.5. University of Newcastle, Newcastle upon Tyne.Google Scholar
Kadereit, A., Kind, C.-J.,Wagner, G.A., 2013. The chronological position of the Lohne soil in the Nussloch loess section: re-evaluation for a European loess-marker horizon. Quaternary Science Reviews 59, 6786.CrossRefGoogle Scholar
Khabakov, A.V., 1946. Ob indeksakh okatannosti galechnikov [On roundness indexes of pebbles]. Soviet Geology 10, 9899.Google Scholar
Krapivner, R.B. 2018. Krizis lednikovoi teorii: argumenti i fakti [Crisis of the Glacial Theory: Arguments and Facts]. GEOS, Moscow.Google Scholar
Krinsley, D.H., Doornkamp, J.C., 1973. Atlas of Quartz Sand Surface Textures, Cambridge University Press, Cambridge.Google Scholar
Krylov, G.V., 1961. Lesa zapadnoy Sibiri [Forests of West Siberia]. Nauka, Moscow.Google Scholar
Kukurichkin, G.M., Neshtaev, V.Y., 2004. Ocherk vodorazdelnih lesov prirodnogo parka “Sibirskie Uvali” [Sketch of the watershed forests of natural park “Sibirskie Uvaly”]. In: Ovechkina, E.S. (Ed) Ekologicheskie issledovaniya vostochnoi chasti Sibirskih Uvalov [Ecological Researches of the Eastern Part of “Sibirskie Uvaly”]. Priobie, Nizhnevartovsk, pp. 1443.Google Scholar
Kuzin, I.L. 2001. Erraticheskie valuni zapadnoy Sibiri [Erratic boulders of West Siberia]. Izvestiya Russkogo geograficheskogo obshestva [Izvestiya of the Russian Geographical Society], 133, 6776.Google Scholar
Kuzin, I.L., 2005. Geomofologia Zapadno-Sibirskoy ravnini [Geomorphology of the West Siberian Plain]. Gosudarstvennaya polyarnaya academia, St. Petersburg.Google Scholar
Kuzin, I.L., 2013. Mifi i realii uchenia o materikovikh oledenenizkh [Myths and Realities of the Concept on Continental Glaciations]. Nasledie, St. Petersburg.Google Scholar
Kuzmina, N.N., Salova, T.A., Sudakova, N.G., Feldman, T.G., 1969. Granulometricheskaya i mineralogicheskaya harakteristika facialnikh kompleksov noveyshih otlozheniy Priazovia [Granulometric and mineralogical characterization of facial complexes of the recent sediments in the Azov region] Noveyshaya Tektonika, Noveyshie Otlozheniya i Chelovek [Neotectonics, recent sediments and humans] Volume 1, Moscow State University, Moscow, pp. 119133.Google Scholar
Laukhin, F.E. Maksimov, K.A. Arslanov, V.Y. Kuznetsov, S.B. Chernov, G.N. Shilova, F.Y. Velichkevich, F.Y., 2008b. Geochronology and landscape–climatic environments of the early Zyryanian interstadial in West Siberia. Doklady Earth Sciences 421, 796799.CrossRefGoogle Scholar
Laukhin, S.A., 2011. “Warm” stages in the West Siberian late Pleistocene. Quaternary International 241, 5167.CrossRefGoogle Scholar
Laukhin, S.A., Arslanov, K.A., Maksimov, F.E., Kuznetsov, V.Y., Shilova, G.N., Velichkevich, F.Y., Chernov, S.B., Nikonorov, Y.A., 2008a. New outcrop of buried Kazantsevo peat at lower reaches of the Irtysh River. Doklady Earth Sciences 419, 200204.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography, 20, PA1003.Google Scholar
Maksimov, F., Arslanov, K., Kuznetsov, V., Chernov, S., 2006. 230Th/U and 14C dating of upper and middle Pleistocene interglacial and interstadial organic deposits from the East European Plain and Siberia. In: Frechen, M. (Ed.), Pleistocene Environments in Eurasia. Geoscience Center, Hannover, pp. 4548.Google Scholar
Maksimov, F.E., Kuznetsov, V.Y., 2010. Novaya versiya 230Th/U datirovaniya verkhne- i sredneneopleistotsenovykh pogrebennykh organogennykh otlozhenii [New version of 230Th/U dating of the upper and middle Pleistocene buried organogenic sediments]. Bulletin of the St. Petersburg State University 7, 103114.Google Scholar
Maksimov, F.E., Zaretskaya, N.E., Shebotinov, V.V., Kuznetsov, V.Y., Uspenskaya, O., Grigoriev, V.A., Kuksa, K.A., 2015. Novyye vozmozhnosti radioizotopnogo datirovaniya pogrebennykh organogennykh chetvertichnykh otlozheniy na primere razreza Kur'yador, dolina verkhney Vychegdy [A new approach to isotope dating of buried organic-rich deposits with an example from the Kuryador section, upper Vychegda valley]. Doklady Earth Sciences 462, 570574.CrossRefGoogle Scholar
Maloletko, A.M., 2008. Evolyutsiya rechnykh sistem Zapadnoi Sibiri v mezozoe i kaynozoe [Evolution of the River Systems of Western Siberia in the Mesozoic and Cenozoic]. TGU, Tomsk.Google Scholar
Morozova, T.D., 1981. Razvitiye pochvennogo pokrova Yevropy v pozdnem pleystotsene [Soils Cover Development of Europe in the Late Pleistocene]. Nauka, Moscow.Google Scholar
Niemeyer, B., Klemm, J., Pestryakova, L.A., Herzschuh, U., 2015. Relative pollen productivity estimates for common taxa of the northern Siberian Arctic. Review of Palaeobotany and Palynology 221, 7182CrossRefGoogle Scholar
Rogov, V.V., 2000. Characteristic features of particle morphology in the skeleton of cryogenic eluvium. Earth's Cryosphere 4, 6774.Google Scholar
Rukhin, L.B., 1969. Osnovi litologii [Basics of Lithology]. Nedra, Leningrad.Google Scholar
Rusakov, A., Sedov, S., 2012. Late Quaternary pedogenesis in periglacial zone of northeastern Europe near ice margins since MIS 3: timing, processes, and linkages to landscape evolution. Quaternary International 265, 126141.CrossRefGoogle Scholar
Rusakov, A., Sedov, S., Sheinkman, V., Dobrynin, D., Zinovyev, E., Trofimova, S., Maksimov, F., Kuznetsov, V., Korkka, M., Levchenko, S., 2018. Late Pleistocene paleosols in the extra-glacial regions of northwestern Eurasia: pedogenesis, post-pedogenic transformation, paleoenvironmental inferences. Quaternary International 501, 174192.CrossRefGoogle Scholar
Russell, R.D., Taylor, R.E., 1937. Roundness and shape of Mississippi River sands. Journal of Geology 45, 225267.CrossRefGoogle Scholar
Saks, V.N., 1953. Chetvertichniy period v Sovetskoy Arktike [Quaternary Period of the Soviet Arctic]. Gidrometeoizdat, Moscow and Leningrad.Google Scholar
Sedov, S., Rusakov, A., Sheinkman, V., Korkka, M., 2016. MIS3 paleosols in the center-north of eastern Europe and western Siberia: reductomorphic pedogenesis conditioned by permafrost? Catena 146, 3847.CrossRefGoogle Scholar
Shchetnikov, A.A., Bezrukova, E.V., Maksimov, F.E., Kuznetsov, V.Y., Filinov, I.A., 2016. Environmental and climate reconstructions of the Fore-Baikal area during MIS 5-1: proxies from sediments of the Ust-Oda section (Siberia, Russia). Journal of Asian Earth Sciences 129, 220230.CrossRefGoogle Scholar
Sheinkman, V.S., 2016. Quaternary glaciation in north-western Siberia: new evidence and interpretation. Quaternary International 420, 1523CrossRefGoogle Scholar
Sheinkman, V.S., 2017. Glaciation of Siberia and the problem of massive ice beddings. Led i Sneg [Ice and Snow] 57, 527542.Google Scholar
Sheinkman, V.S., Melnikov, V.P., Sedov, S.N., Parnachev, V.P., 2017. New evidence of the nonglaciated development of the northern part of the western Siberian lowland in the Quaternary period. Doklady Earth Sciences 477, 14301433.CrossRefGoogle Scholar
Sheinkman, V.S., Plyusnin, V.M., 2014. Glaciation of western Siberia in the Siberian system of natural ice. Geography and Natural Resources 3, 2231.Google Scholar
Sheinkman, V.S., Sedov, S.N., Rusakov, A.V., Melnikov, V.P., 2019. Evidence of permafrost in paleosols: cryotraceological approach. Earth's Cryosphere, 23, 4553.Google Scholar
Sheinkman, V.S., Sedov, S.N., Shumilovskikh, L., Korkina, S., Korkin, S., Zinovyev, E., Golyeva, A., 2016. First results from the late Pleistocene paleosols in northern western Siberia: implications for pedogenesis and landscape evolution at the end of MIS3. Quaternary International 418, 132146.CrossRefGoogle Scholar
Shichi, K., Kawamuro, K., Takahara, H., Hase, Y., Maki, T., Miyoshi, N., 2007. Climate and vegetation changes around Lake Baikal during the last 350,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 248, 357375.CrossRefGoogle Scholar
Shpolyanskaya, N.A., 2014. Permafrost (cryolithozone) of the Russian Arctic Shelf. Universal Journal of Geoscience 2, 717.Google Scholar
Shumilovskikh, L.S., Schlütz, F., Achterberg, I., Bauerochse, A., Leuschner, H.H., 2015. Non-pollen palynomorphs from mid-Holocene peat of the raised bog Borsteler Moor (Lower Saxony, Germany). Studia Quaternaria 32, 518.CrossRefGoogle Scholar
Sibirskiy Nauchno-Issledovatelskiy Institut Geologii, Geofiziki i Mineralnogo Syr'ya (SNIIGGiMS) [Siberian Research Institute of Geology, Geophysics and Mineral Resources] 2000. Unifitsirovannaya regional'naya stratigraficheskaya skhema chetvertichnykh otlozhenii Zapadno-Sibirskoi ravniny. Ob'yasnitel’naya zapiska i skhema [Unified Regional Stratigraphic Scheme of Quaternary Sediments of the Western Siberian Plain. Explanatory Notes and Scheme]. Novosibirsk. (in Russian).Google Scholar
Stoops, G., 2003. Guidelines for Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America, Madison, WI.Google Scholar
Streletskaya, I.D., Vasiliev, A.A., Oblogov, G.E., Tokarev, I.V., 2015. Reconstruction of paleoclimate of Russian Arctic in the late Pleistocene–Holocene on the basis of isotope study of ice wedges. Earth's Cryosphere 19, 8694.Google Scholar
Svendsen, J.I., Alexandersson, H., Astakhov, V., Demidov, J., Dowdeswell, J.A., Henriksen, M., Hjort, C. et al. , 2004. Ice sheet history of northern Eurasia. Quaternary Science Reviews 22, 12291271.CrossRefGoogle Scholar
Sycheva, S.A., Sedov, S.N., Bronnikova, M.A., Targulian, V.O., Solleiro-Rebolledo, E., 2017. Genesis, evolution, and catastrophic burying of the Ryshkovo paleosol of the Mikulino interglacial (MIS 5e). Eurasian Soil Science 50, 9911009.CrossRefGoogle Scholar
Tarasov, P., Bezrukova, E., Karabanov, E., Nakagawa, T., Wagner, M., Kulagina, N., Letunova, P., Abzaeva, A., Granoszewski, W., Riedel, F., 2007. Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records. Palaeogeography, Palaeoclimatology, Palaeoecology 252, 440457.CrossRefGoogle Scholar
Targulian, V.O., Goryachkin, S.V., 2004. Soil memory: types of record, carriers, hierarchy and diversity. Revista mexicana de ciencias geológicas, 21, 18.Google Scholar
Terhorst, B., Appel, E., Werner, A., 2001. Palaeopedology and magnetic susceptibility of loess-palaesol sequence in southwest Germany. Quaternary International 76–77, 231240.CrossRefGoogle Scholar
Terhorst, B., Sedov, S.N., Sprafke, T., Peticzka, R., Meyer-Heintze, S., Kühn, P., Solleiro-Rebolledo, E., 2015. Austrian MIS 3/2 loess–palaeosol records: key sites along a west–east transect. Palaeogeography, Palaeoclimatology, Palaeoecology 418, 4356.CrossRefGoogle Scholar
Van Geel, B., 1978. A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Review of Palaeobotany and Palynology 25, 1120.CrossRefGoogle Scholar
Van Vliet-Lanoë, B., 2010. Frost action. In: Stoops, G., Marcelino, V., Mees, F. (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam, pp. 81106.CrossRefGoogle Scholar
Vasil'chuk, Y., Vasil'chuk, A., 2014. Spatial distribution of mean winter air temperatures in Siberian permafrost at 20–18 ka BP using oxygen isotope data. Boreas 43, 678687.CrossRefGoogle Scholar
Vasilevskaya, V.D., Ivanov, V.V., Bogatirev, L.G., 1986. Pochvy severa Zapadnoy Sibiri [Soils of the Northern Part of West Siberia]. Moscow State University, Moscow.Google Scholar
Vdovin, V.V., Provodnikov, L.Y., 1965. Istoriya formirovaniya mezozoysko-kaynozoyskikh otlozheniy i sovremennogo rel'yefa v basseyne reki Vakh [History of the Formation of the Mesozoic: Cenozoic Deposits and Modern Relief in the Vakh River Basin]. USSR Academy of Sciences, Siberian Branch, Novosibirsk.Google Scholar
Velichko, A.A., 1990. Loess-paleosol formation on the Russian plain. Quaternary International 7–8, 103114.CrossRefGoogle Scholar
Velichko, A.A. (Ed.), 2009. Paleoklimaty i paleolandshafty vnetropicheskogo prostranstva Severnogo polushariya: Pozdniy pleystotsen–golotsen [Paleoclimate and Paleolandscapes of the Extratropic Area of Northern Eurasia: The Late Pleistocene-Holocene]. GEOS, Moscow.Google Scholar
Velichko, A.A., Timireva, S.N., Kremenetski, K.V., MacDonald, G.M., Smith, L.C., 2011. West Siberian Plain as a late glacial desert. Quaternary International 237, 4553.CrossRefGoogle Scholar
Velichko, A., Kononov, Y., Faustova, M., 1997. The last glaciation of earth: size and volume of ice-sheets. Quaternary International 41–42, 4351.CrossRefGoogle Scholar
Velichko, A., Timireva, S., 1995. Morphoscopy and morphometry of quartz grains from loess and buried soil layers. GeoJournal 36, 143149.CrossRefGoogle Scholar
Volkova, V.S., 2001. Paleogeografiya karginskogo mezhlednikov'ya (mezhstadiala) v Zapadnoy Sibiri 50(55)—23 tys. let nazad [Paleogeography of Kargian interglacial (interstadial) in western Siberia 50(55)–23 ka BP]. Bulleten Komissii po Izucheniyu Chetvertichnogo Perioda [Bulletin of Commission for Study of the Quaternary] 64, 8993.Google Scholar
Volkova, V.S., Arkhipov, S.A., Babushkin, A.E., Kul'kova, I.A., Gus'kov, S.A., Kuz'mina, O.B., Levchuk, L.K., Mikhailova, I.V., Sukhorukova, S.S., 2003. Kaynozoy Zapadnoy Sibiri [Cenozoic of West Siberia]. Izdatelstvo SO RAN, Novosibirsk.Google Scholar
Wetterich, S., Schirrmeister, L., Andreev, A.A., Pudenz, M., Plessen, B., Meyer, H., Kunitsky, V.V., 2009. Eemian and late glacial/Holocene palaeoenvironmental records from permafrost sequences at the Dmitry Laptev Strait (NE Siberia, Russia). Palaeogeography, Palaeoclimatology, Palaeoecology 279, 7395.CrossRefGoogle Scholar
Yamskikh, A.F., Yamskikh, A.A., Brown, A.G., 1999. Siberian-type of the Quaternary Flood-Plain Sedimentation: The Example of the Yenisei River. In: Brown, A., Quine, T. (Eds.), Fluvial Processes and Environmental Change. Wiley, New York, pp. 241252.Google Scholar
Zemtsov, A.A., 1976. Geomorfologia Zapadno-Sibirskoy ravnini (severnaya i tsentralnaya chast) [Geomorphology of the West-Siberia Plain (Northern and Central Parts)]. Izd. Tomskogo Universiteta, Tomsk.Google Scholar
Zinovyev, E.V., Borodin, A.V., Trofimova, S.S., Sheinkman, V.S., Rusakov, A.V., Sedov, S.N., Bobkov, R.A., 2016. Late Pleistocene insect complexes (West Siberia, Vakh River) and their paleoenvironmental characteristics. Euroasian Entomological Journal 15, 483498.Google Scholar
Zykina, V.S., Zykin, V.S., 2012. Lessovo-pochvennaya posledovatel‘nost’ i evolyutsiya prirodnoy sredy i klimata Zapadnoy Sibiri v pleystotsene. [Loess-Soil Sequence and Evolution of the Natural Environment and Climate of Western Siberia in the Pleistocene]. Academic Publishing “GEO,” Novosibirsk.Google Scholar