Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T13:25:03.130Z Has data issue: false hasContentIssue false

A multi-proxy lacustrine record of Holocene climate change on northeastern Baffin Island, Arctic Canada

Published online by Cambridge University Press:  20 January 2017

Jason P. Briner*
Affiliation:
Geology Department, University at Buffalo, Buffalo, NY 14260, USA
Neal Michelutti
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, USA
Donna R. Francis
Affiliation:
Department of Geosciences, University of Massachusetts, Amherst, MA 01003, USA
Gifford H. Miller
Affiliation:
Department of Geological Sciences and the Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80303, USA
Yarrow Axford
Affiliation:
Department of Geological Sciences and the Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80303, USA
Matthew J. Wooller
Affiliation:
Alaska Stable Isotope Facility, Water and Environmental Research Center and School of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, AL 99775-5860, USA
Alexander P. Wolfe
Affiliation:
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, USA
*
*Corresponding author. Fax: +1 716 495 3999. E-mail address:[email protected] (J.P. Briner).

Abstract

Reconstructions of past environmental changes are critical for understanding the natural variability of Earth's climate system and for providing a context for present and future global change. Radiocarbon-dated lake sediments from Lake CF3, northeastern Baffin Island, Arctic Canada, are used to reconstruct past environmental conditions over the last 11,200 years. Numerous proxies, including chironomid-inferred July air temperatures, diatom-inferred lakewater pH, and sediment organic matter, reveal a pronounced Holocene thermal maximum as much as 5°C warmer than historic summer temperatures from ∼10,000 to 8500 cal yr B.P. Following rapid cooling ∼8500 cal yr B.P., Lake CF3 proxies indicate cooling through the late Holocene. At many sites in northeastern Canada, the Holocene thermal maximum occurred later than at Lake CF3; this late onset of Holocene warmth is generally attributed to the impacts of the decaying Laurentide Ice Sheet on early Holocene temperatures in northeastern Canada. However, the lacustrine proxies in Lake CF3 apparently responded to insolation-driven warmth, despite the proximity of Lake CF3 to the Laurentide Ice Sheet and its meltwater. The magnitude and timing of the Holocene thermal maximum at Lake CF3 indicate that temperatures and environmental conditions at this site are highly sensitive to changes in radiative forcing.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barlow, L.K., Sadler, J.P., Ogilvie, A.E.J., Buckland, P.C., Amorosi, T., Ingimundarson, J.H., Skidmore, P., Dugmore, A.J., McGover, T.H., (1997). Interdisciplinary investigations of the end of the Norse western settlement in Greenland. The Holocene 7, 489499.Google Scholar
Bennike, O., (2000). Palaeoecological studies of Holocene lake sediments from west Greenland. Palaeogeography Palaeoclimatology Palaeoecology 155, 285304.CrossRefGoogle Scholar
Berger, A., Loutre, M.F., (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 291310.Google Scholar
Bigler, C., Larocque, I., Peglar, S.M., Birks, H.J.B., Hall, R.I., (2002). Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. The Holocene 12, 481496.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 21302136.CrossRefGoogle ScholarPubMed
Briner, J.P., (2003). The Last Glaciation of the Clyde Region, Northeastern Baffin Island, Arctic Canada: Cosmogenic Isotope Constraints on Laurentide Ice Sheet Dynamics and Chronology. [PhD thesis], . University of Colorado, Boulder. 300 p.Google Scholar
Briner, J.P., Miller, G.H., Davis, P.T., Finkel, R., (2005). Cosmogenic exposure dating in arctic glacial landscapes: implications for the glacial history of northeastern Baffin Island, Arctic Canada. Canadian Journal of Earth Sciences 42, 6784.Google Scholar
CAPE Project Members(2001). Holocene paleoclimate data from the Arctic: testing models of global climate change. Quaternary Science Reviews 20, 12751287.Google Scholar
Dahl-Jensen, D., Mosegaard, K., Gundestrup, G., Clow, G.D., Johnson, SJ., Hansen, A.W., Balling, B., (1998). Past temperature directly from the Greenland ice sheet. Science 282, 268271.Google Scholar
Dean, W.E. Jr., (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, 242248.Google Scholar
Dyke, A.S., Dale, J.E., McNeely, R.N., (1996). Marine molluscs as indicators of environmental change in glaciated North America and Greenland during the last 18,000 years. Géographie Physique et Quaternaire 50, 125184.Google Scholar
Dyke, A.S., Andrews, J.T., Clark, P.U., England, J.H., Miller, G.H., Shaw, J., Veillette, J.J., (2002). The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quaternary Science Reviews 21, 931.CrossRefGoogle Scholar
Fisher, D.A., Koerner, R.M., (2003). Holocene ice core climate history, a multi-variable approach. Mackay, A., Battarbee, R., Birks, J., Oldfield, F. Global Change in the Holocene Arnold, London. 281293.Google Scholar
Fisher, D.A., Koerner, R.M., Reeh, N., (1995). Holocene climatic records from Agassiz Ice Cap, Ellesmere Island, NWT, Canada. The Holocene 5, 1924.Google Scholar
Fisher, D.A., Koerner, R.M., Bourgeois, J.C., Zielinski, G., Wake, C., Hammer, C.U., Clausen, H.B., Gundestrup, N., Johnsen, S., Goto-Azuma, K., Hondoh, T., Blake, E., Gerasimoff, M., (1998). Penny ice cap cores, Baffin Island, Canada, and the Wisconsinan Foxe Dome connection: two states of Hudson Bay ice cover. Science 279, 692695.CrossRefGoogle ScholarPubMed
Flanagan, K.M., McCauley, E., Wrona, F., Prowse, T., (2003). Climate change: the potential for latitudinal effects on algal biomass in aquatic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 60, 635639.Google Scholar
Harris, D., Howarth, W.R., van Kessel, C., (2001). Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Science Society of America Journal 65, 18531856.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F., Lemcke, G., (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and compatibility of results. Journal of Paleolimnology 25, 101110.CrossRefGoogle Scholar
Hodell, D.A., Schelske, C.L., (1998). Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnology and Oceanography 43, 200214.Google Scholar
Jacobs, J.D., Andrews, J.T., (1985). Environmental background. Andrews, J.T. Quaternary Environments: Eastern Canadian Arctic, Baffin Bay and Western Greenland Allen and Unwin, Boston. 2668.Google Scholar
Jones, R.I., King, L., Dent, M.M., Maberly, S.C., Gibson, C.E., (2004). Nitrogen stable isotope ratios in surface sediments, epilithon and macrophytes from upland lakes with differing nutrient status. Freshwater Biology 49, 382391.Google Scholar
Joynt, E.H. III, Wolfe, A.P., (2001). Paleoenvironmental inference models from sediment diatom assemblages in Baffin Island lakes (Nunavut, Canada), with special reference to the reconstruction of summer water temperature. Canadian Journal of Fisheries and Aquatic Sciences 58, 12221243.CrossRefGoogle Scholar
Juggins, S., (2003). C2 Data Analysis v1.3 (software). University of Newcastle, .Google Scholar
Kaplan, M.R., Wolfe, A.P., Miller, G.H., (2002). Holocene environmental variability in southern Greenland inferred from lake sediments. Quaternary Research 58, 149159.CrossRefGoogle Scholar
Kaufman, D.S., Ager, T.A., Anderson, N.J., Anderson, P.M., Andrews, J.T., Bartlein, P.T., Brubaker, L.B., Coats, L.L., Cwynar, L.C., Duvall, M.L., Dyke, A.S., Edwards, M.E., Eisner, W.R., Gajewski, K., Geirsdottir, A., Hu, F.S., Jennings, A.E., Kaplan, M.R., Kerwin, M.W., Lozhkin, A.V., MacDonald, G.M., Miller, G.H., Mock, C.J., Oswald, W.W., Otto-Bliesner, B.L., Porinchu, D.F., Ruhland, K., Smol, J.P., Steig, E.J., Wolfe, B.B., (2004). Holocene thermal maximum in the western Arctic (0–180 degrees W). Quaternary Science Reviews 23, 20592060.Google Scholar
Kelly, M., (1985). A review of the Quaternary Geology of western Greenland. Andrews, J.T. Quaternary Environments: Eastern Canadian Arctic, Baffin Bay and Western Greenland Allen and Unwin, Boston. 461501.Google Scholar
Kerwin, M.W., Overpeck, J.T., Webb, R.S., Anderson, K.H., (2004). Pollen-based summer temperature reconstructions for the eastern Canadian boreal forest, subarctic, and Arctic. Quaternary Science Reviews 23, 19011924.Google Scholar
Koinig, K.A., Schmidt, R., Sammaruga-Wögrath, S., Tessadri, R., Psenner, R., (1998). Climate change as the primary cause for pH shifts in a high arctic lake. Water Air and Soil Pollution 104, 167180.CrossRefGoogle Scholar
Krammer, K., Lange-Bertalot, H., (1986). Bacillariophyceae. Ettl, H., Gerloff, J., Heynig, D., Mollenhauer, D. Sußwasserflora von Mitteleuropa vol. 2 (1–4), Gustav Fischer Verlag, Stuttgart/Jena.Google Scholar
Larocque, I., Bigler, C., (2004). Similarities and discrepancies between chrionomid- and diatom-inferred temperature reconstructions through the Holocene at Lake 850, northern Sweden. Quaternary International 122, 109121.CrossRefGoogle Scholar
Levac, E., de Vernal, A., Blake, W. Jr., (2001). Sea-surface conditions in northernmost Baffin Bay during the Holocene: palynological evidence. Journal of Quaternary Science 16, 353363.Google Scholar
Meyers, P.A., Teranes, J.L., (2001). Sediment organic matter. Last, W.M., Smol, J.P. Tracking Environmental Change Using Lake Sediments Kluwer Academic Publishers, 239270.Google Scholar
Miller, G.H., Mode, W.N., Wolfe, A.P., Sauer, P.E., Bennike, O., Forman, S.L., Short, S.K., Stafford, T.W. Jr., (1999). Stratified interglacial lacustrine sediments from Baffin Island, Arctic Canada: chronology and paleoenvironmental implications. Quaternary Science Reviews 18, 789810.Google Scholar
Moritz, R.E., Bitz, C.M., Steig, E.J., (2002). Dynamics of recent climate change in the Arctic. Science 297, 14971502.Google Scholar
Nesje, A., (1992). A piston corer for lacustrine and marine sediments. Arctic and Alpine Research 24, 257259.CrossRefGoogle Scholar
Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Douglas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A., Lamoureux, S., Lasca, A., MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A., Zielinski, G., (1997). Arctic environmental change of the last four centuries. Science 278, 12511256.Google Scholar
Patrick, R., Reimer, C.W., (1966). The diatoms of the United States exclusive of Alaska and Hawaii,. vol. 1, . Academy of Natural Sciences of Philadelphia. Monograph No. 13.Google Scholar
Patrick, R., Reimer, C.W., (1975). The diatoms of the United States exclusive of Alaska and Hawaii. vol. 2, . Academy of Natural Sciences of Philadelphia. Monograph No. 13.Google Scholar
Psenner, R., Schmidt, R., (1992). Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356, 781783.CrossRefGoogle Scholar
Rosén, P., Segerstrom, U., Eriksson, L., Renberg, I., Birks, H.J.B., (2001). Holocene climatic change reconstructed from diatoms, chironomids, pollen and near-infrared spectroscopy at an alpine lake (Sjuodjijaure) in northern Sweden. The Holocene 11, 551562.Google Scholar
Schelske, C.L., Hodell, D.A., (1995). Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnology and Oceanography 40, 918929.Google Scholar
Smol, J.P., Wolfe, A.P., Birks, H.J.B., Douglas, M.S.V., Jones, V.J., Korhola, A., Pienitz, R., Ruhland, K., Sorvari, S., Antoniades, D., Brooks, S.J., Fallu, M.A., Hughes, M., Keatley, B.E., Laing, T.E., Michelutti, N., Nazarova, L., Nyman, M., Paterson, A.M., Perren, B., Quinlan, R., Rautio, M., Saulnier-Talbot, E., Siitoneni, S., Solovieva, N., Weckstrom, J., (2005). Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences of the United States of America 102, 43974402.Google Scholar
Sommaruga-Wögrath, S., Koinig, K., Schmidt, R., Sommaruga, R., Tessadri, R., Psenner, R., (1997). Temperature effects on the acidity of remote alpine lakes. Nature 387, 6467.Google Scholar
Stuiver, M., Reimer, P.J., (1993). Extended C-14 data-base and revised CALIB 3.0 C-14 age calibration program. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Talbot, M.R., (2001). Nitrogen isotopes in palaeolimnology. Last, W.M., Smol, J.P. Tracking Environmental Change Using Lake Sediments Physical and Geochemical Techniques vol. 2, Kluwer Academic Publishers, Dordrecht. 401439.Google Scholar
Walker, I.R., (2001). Midges: chironomidae and related Diptera. Smol, J.P., Birks, H.J.B., Last, W.M. Tracking Environmental Change in Lake Sediments Zoological Indicators vol. 4, Kluwer Academic Publishers, Dordrecht. 4366.Google Scholar
Walker, I.R., Leveque, A.J., Cwynar, L.C., Lotter, A.F., (1997). An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. Journal of Paleolimnology 18, 165178.Google Scholar
Willemse, N.W., Törnqvist, T.E., (1999). Holocene century-scale temperature variability from West Greenland lake records. Geology 27, 580584.Google Scholar
Wilson, S.B., Cumming, B.F., Smol, J.P., (1996). Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219 lake dataset from western North America. Canadian Journal of Fisheries and Aquatic Sciences 53, 15801594.Google Scholar
Wolfe, A.P., (1996). A high resolution late-glacial and Early Holocene diatom record from Baffin Island, eastern Canadian Arctic. Canadian Journal of Earth Sciences 33, 928937.Google Scholar
Wolfe, A.P., (2002). Climate modulates the acidity of arctic lakes on millennial time scales. Geology 215218.2.0.CO;2>CrossRefGoogle Scholar
Wolfe, A.P., Fréchette, B., Richard, P.J.H., Miller, G.H., Forman, S.L., (2000). Paleoecological Assessment of a >90,000-year record from Fog Lake, Baffin Island, Arctic Canada. Quaternary Science Reviews 19, 16771699.Google Scholar
Wolfe, A.P., Van Gorp, A.C., Baron, J.S., (2003). Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): a response to anthropogenic nitrogen deposition. Geobiology 1, 153168.Google Scholar
Wolfe, A.P., Miller, G.H., Olsen, C.A., Forman, S.L., Doran, P.T., Holmgren, S.U., (2004). Geochronology of high latitude lake sediments. Pienitz, R., Douglas, M.S.V., Smol, J.P. Long-term Environmental Change in Arctic and Antarctic Lakes Kluwer Academic Publishers, Dordrecht, The Netherlands. 132.Google Scholar
Wooller, M.J., Francis, D., Fogel, M.L., Miller, G.H., Walker, I.R., Wolfe, A.P., (2004). Quantitative paleotemperature estimates from 18O of chironomid head capsules preserved in arctic lake sediments. Journal of Paleolimnology 31, 267274.CrossRefGoogle Scholar