Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T05:37:03.809Z Has data issue: false hasContentIssue false

Molluscs as Evidence for a Late Pleistocene and Early Holocene Humid Period in the Southern Coastal Desert of Peru (14.5°S)

Published online by Cambridge University Press:  20 January 2017

Bertil Mächtle*
Affiliation:
Geographical Institute, Heidelberg University, INF 348, D-69120 Heidelberg, Germany
Ingmar Unkel
Affiliation:
GeoBiosphere Science Centre, Quaternary Sciences, Sölvegatan 12, S-223 62 Lund, Sweden
Bernhard Eitel
Affiliation:
Geographical Institute, Heidelberg University, INF 348, D-69120 Heidelberg, Germany
Bernd Kromer
Affiliation:
Heidelberg Academy of Sciences, c/o Institute of Environmental Physics, INF 229, D-69120 Heidelberg, Germany
Solveig Schiegl
Affiliation:
Institut für Ur- und Frühgeschichte und Archäologie des Mittelalters, Abteilung Ältere Urgeschichte und Quartärökologie, Arbeitsbereich Naturwissenschaftliche Archäologie, Tübingen University, Rümelinstr. 23, D-72070 Tübingen, Germany
*
*Corresponding author. Bertil Mächtle, Heidelberg University – Geographical Institute, INF 348, D-69120 Heidelberg, Germany. Fax: +49 6221 54 4997. E-mail address:[email protected]

Abstract

The southern Peruvian coastal desert around Palpa, southern Peru (14.5°S) is currently characterized by hyper-arid conditions. However, the presence of two species of molluscs (Scutalus, Pupoides) and desert-loess deposits indicates the past development of semi-desert and grassland ecosystems caused by a displacement of the eastern desert margin due to hydrological changes. Radiocarbon dating shows that the transition to a semi-arid climate in the southern Peruvian coastal desert took place during the Greenland interstadial 1, ∼ 13.5 cal ka BP. At the beginning of the Holocene, the mollusc fauna vanished due to increasing humidity and the development of grasslands. Dust particles were fixed by the grasses, as indicated by abundant Poaceae phytoliths, and desert loess was formed. The humid period we observe here is out of phase with the palaeoenvironmental records from the Titicaca region, which indicates dry conditions at that time. This paper offers a new idea for this contradiction: an orbitally driven meridional shift of the Bolivian high might have altered the moisture supply across the Andes.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrows, T.T., Lehman, S.J., Fifield, L.K., De Deckker, P., (2007). Absence of cooling in New Zealand and the adjacent ocean during the Younger Dryas chronozone. Science 318, 5847, 8689., 10.1126/science.1145873 Google Scholar
Berger, A., Loutre, M.F., (1991). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 4, 297317. doi:10.1016/0277-3791(91)90033-Q Google Scholar
Betancourt, J.L., Latorre, C., Rech, J.A., Quade, J., Rylander, K.A., (2000). A 22,000-year record of monsoonal precipitation from Northern Chile's Atacama Desert. Science 289, 15421546.CrossRefGoogle ScholarPubMed
Björck, S., Walker, M.J.C., Cwyanr, L.W., Johnsen, S., Knudsen, K.-L., Lowe, J., Wohlfahrt, B., INTIMATE members, , (1998). An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13, 4, 283292.Google Scholar
Blunier, T., Chappellaz, J.A., Schwander, J., Dällenbach, A., Stauffer, B., Stocker, T.F., Raynaud, D., Jouzel, J., Clausen, H.B., Hammer, C.U., Johnsen, S., (1998). Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, 739743. doi:10.1038/29447 CrossRefGoogle Scholar
Broecker, W.S., (1998). Paleocean circulation during the last deglaciation: a bipolar seesaw?. Paleoceanography 13, 2, 119121. doi:10.1029/97PA03707.CrossRefGoogle Scholar
Bronk Ramsey, C., (2001). Development of the radiocarbon calibration program. Radiocarbon 43, 2A, 355363.CrossRefGoogle Scholar
Bronk Ramsey, C., (2008). Deposition models for chronological records. Quaternary Science Reviews 27, 1–2, 4260., 10.1016/j.quascirev.2007.1001.1019 CrossRefGoogle Scholar
Buck, C.E., Millard, A.R., (2004). Tools for Constructing Chronologies. Springer Verlag, London.Google Scholar
Bush, A.B.G., (1999). Assessing the impact of Mid-Holocene insolation on the atmosphere-ocean system. Geophysical Research Letters 26, 1, 99102. doi:10.1029/1998GL900261 CrossRefGoogle Scholar
Bush, M.B., Silman, M.R., Urrego, D.H., (2004). 48,000 years of climate and forest change in a biodiversity hot spot. Science 303, 827829.Google Scholar
Caviedes, C.N., Fik, T.J., (1992). Peru-Chile eastern Pacific fisheries and climatic oscillation. Glantz, M.H. Climate Variability, Climate Change and Fisheries.Cambridge University Press, Cambridge.355376.CrossRefGoogle Scholar
Clapperton, C.M., Hall, M., Mothes, P., Hole, M.J., Still, J.W., Helmens, K.F., Kuhry, P., Gemmell, A.M.D., (1997). A Younger Dryas icecap in the equatorial Andes. Quaternary Science Reviews 47, 1, 1328., 10.1006/qres.1996.1861 Google Scholar
De Batist, M., Fagel, N., Loutre, M.-F., Chapron, E., (2008). A 17,900-year multi-proxy lacustrine record of Lago Puyehue (Chilean Lake District): introduction. Journal of Paleolimnology 39, 2, 151161.doi:10.1007/s10933-007-9113-2 Google Scholar
Eitel, B., Hecht, S., Mächtle, B., Schukraft, G., Kadereit, A., Wagner, G., Kromer, B., Unkel, I., Reindel, M., (2005). Geoarchaeological evidence from desert loess in the Nazca-Palpa region, southern Peru: palaeoenvironmental changes and their impact on pre-Columbian cultures. Archaeometry 47, 1, 137158.doi:10.1111/j.1475-4754.2005.00193.x Google Scholar
Elera, C.G., (1993). El complejo cultural Cupisnique: antecedentes y desarrollo de su ideologia religiosa. Senri Ethnological Studies 37, 229257.Google Scholar
EPICA-community-members, , (2004). Eight glacial cycles from an Antarctic ice core. Nature 429, 623628.Google Scholar
EPICA-community-members, , (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, 195198.Google Scholar
Goodfriend, G.A., (1987). Radiocarbon age anomalies in shell carbonate of land snails from semi-arid areas. Radiocarbon 29, 2, 159167.CrossRefGoogle Scholar
Goodfriend, G.A., Ellis, G.L., Toolin, L.J., (1999). Radiocarbon age anomalies in land snail shells from Texas: ontogenetic, individual, and geographic patterns of variation. Radiocarbon 41, 2, 149156.Google Scholar
Jass, C., Mead, J., Morrison, A., Agenbroad, L., (2002). Late Pleistocene molluscs from the southern Black Hills, South Dakota. Western North American Naturalist 62, 2, 129140.Google Scholar
Jouzel, J., Barkov, N.I., Barnola, J.M., Bender, M., Chappellaz, J., Genthon, C., Kotlyakov, V.M., Lipenkov, V., Lorius, C., Petit, J.R., Raynaud, D., Raisbeck, G., Ritz, C., Sowers, T., Stievenard, M., Yiou, F., Yiou, P., (1993). Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period. Nature 364, 407412.Google Scholar
Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H.W., Stoner, J., (2004). Antarctic timing of surface water changes off Chile and Patagonian Ice Sheet response. Science 304, 5679, 19591962.doi:10.1126/science.1097863 Google Scholar
Lamy, F., Kaiser, J., Arz, H.W., Hebbeln, D., Ninnemann, U., Timm, O., Timmermann, A., Toggweiler, J.R., (2007). Modulation of the bipolar seesaw in the Southeast Pacific during Termination 1. Earth and Planetary Science Letters 259, 3–4, 400413.Google Scholar
Leduc, G., Vidal, L., Tachikawa, K., Rostek, F., Sonzogni, C., Beaufort, L., Bard, E., (2007). Moisture transport across Central America as a positive feedback on abrupt climatic changes. Nature 445, 908911.Google Scholar
Lowe, J.J., Rasmussen, S.O., Björck, S., Hoek, W.Z., Steffensen, J.P., Walker, M.J.C., Yu, Z.C., (2008). Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews 27, 1–2, 617., 10.1016/j.quascirev.2007.1009.1016 CrossRefGoogle Scholar
McCormac, G., Reimer, P.J., Hogg, A.G., Higham, T.F.G., Baillie, M.G.L., Palmer, J., Stuiver, M., (2002). Calibration of the radiocarbon time scale for the southern hemisphere: AD 1850–950. Radiocarbon 44, 3, 641651.Google Scholar
McCormac, G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., Reimer, P.J., (2004). SHCal04 Southern Hemisphere Calibration, 0–11,0" cal kyr BP. Radiocarbon 46, 3, 10871092.Google Scholar
McCulloch, R.D., Fogwill, C.J., Sugden, D.E., Bentley, M.J., Kubik, P.W., (2005). Chronology of the Last Glaciation in central Strait of Magellan and Bahía Inútil, southernmost South America. Geografiska Annaler 87 A, 2, 289312.doi:10.1111/j.0435-3676.2005.00260.x CrossRefGoogle Scholar
Morgan, V., Delmotte, M., v. Ommen, T., Jouzel, J., Chappelaz, J., Woon, S., Masson-Delmotte, V., Raynaud, D., (2002). Relative timing of deglacial climate events in Antarctica and Greenland. Science 297, 18621864.Google Scholar
Mächtle, B., (2007). Geomorphologisch-bodenkundliche Untersuchungen zur Rekonstruktion der holozänen Umweltgeschichte in der nördlichen Atacama im Raum Palpa/Südperu (Heidelberger Geographische Arbeiten 123). Geographisches Institut der Universität Heidelberg, Heidelberg.Google Scholar
NGRIP members, , (2004). NGRIP data from North Greenland Ice Core Project Members 2004, North Greenland Ice Core Project Oxygen Isotope Data. IGBP PAGES/World Data Center for Paleoclimatology, Data Contribution Series # 2004-059. NOAA/NGDC Paleoclimatology Programm, Boulder CO, USA.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, J., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., Stievenard, M., (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.Google Scholar
Pigati, J.S., Quade, J., Shahanan, T.M., Haynes jr., C.V., (2004). Radiocarbon dating of minute gastropods and new constraints on the timing of late Quaternary spring-discharge deposits in southern Arizona, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 204, 3345.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S.W., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, C.B., Plicht, J.V.D., Weyhenmeyer, C.E., (2004). IntCal04 terrestrial radiocarbon age calibration, 0–26" cal kyr BP. Radiocarbon 46, 3, 10291058.Google Scholar
Rein, B., Lückge, A., Reinhardt, L., Sirocko, F., Wolf, A., Dullo, W.-C., (2005). El Niño variability off Peru during the last 20,000 years. Paleoceanography 20, PA4003, PA4003.Google Scholar
Richter, M., (1981). Klimagegensätze in Südperu und ihre Auswirkungen auf die Vegetation. Erdkunde 35, 1230.Google Scholar
Rigsby, C.A., Platt Bradbury, J., Baker, P.A., Rollins, S.M., Warren, M.R., (2005). Late Quaternary palaeolakes, rivers, and wetlands on the Bolivian Altiplano and their palaeoclimatic implications. Journal of Quaternary Science 20, 7–8, 671691.CrossRefGoogle Scholar
Rowe, H.D., Dunbar, R.B., (2004). Hydrologic-energy balance constraints on the Holocene lake-level history of lake Titicaca, South America. Climate Dynamics 23, 439454.Google Scholar
Runge, F., (1999). The opal phytolith inventory of soils in central Africa — quantities, shapes, classification, and spectra. Review of Palaeobotany and Palynology 107, 1–2, 2353., 10.1016/S0034-6667(1099)00018-00014 Google Scholar
Sylvestre, F., Servant, M., Servant-Vildary, S., Causse, C., Fournier, M., Ybert, J.-P., (1999). Lake-level chronology on the southern Bolivian Altiplano (18°–23°S) during Late-Glacial time and the early Holocene. Quaternary Research 51, 1, 5466.CrossRefGoogle Scholar
Unkel, I., (2006). AMS-14C-Analysen zur Rekonstruktion der Landschafts- und Kulturgeschichte in der Region Palpa (S-Peru) (Heidelberger Geographische Arbeiten 121). Geographisches Institut der Universität Heidelberg, Heidelberg.Google Scholar
Unkel, I., Björck, S., Wohlfahrt, B., (2008). Deglacial environmental changes on Isla de los Estados (54.4°S), southeastern Tierra del Fuego. Quaternary Science Reviews 27, 15411554.doi:10.1016/j.quascirev.2008.05.004 Google Scholar
Unkel, I., Kadereit, A., Mächtle, B., Eitel, B., Kromer, B., Wagner, G.A., Wacker, L., (2007). Dating methods and geomorphic evidence of palaeo-environmental changes at the eastern margin of the South Peruvian coastal desert (14°39′ S) before and during the Little Ice Age. Quaternary International 175, 328., 10.1016/j.quaint.2007.1003.1006 Google Scholar
Weaver, A.J., Saenko, O.A., Clark, P.U., Mitrovica, J.X., (2003). Meltwater Pulse 1A from Antarctica as a trigger of the Bølling-Allerød warm interval. Science 299, 17091713.Google Scholar
Wille, M., Maidana, N.I., Schabitz, F., Fey, M., Haberzettl, T., Janssen, S., Lucke, A., Mayr, C., Ohlendorf, C., Schleser, G.H., Zolitschka, B., (2007). Vegetation and climate dynamics in southern South America: the microfossil record of Laguna Potrok Aike, Santa Cruz, Argentina. Review of Palaeobotany and Palynology 146, 1–4, 234246.doi:10.1016/j.revpalbo.2007.05.001 Google Scholar
Vuille, M., (1999). Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. International Journal of Climatology 19, 15791600.Google Scholar