Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T00:17:21.921Z Has data issue: false hasContentIssue false

Modulation of the relationship between summer temperatures in the Qinghai–Tibetan Plateau and Arctic over the past millennium by external forcings

Published online by Cambridge University Press:  12 March 2021

Feng Shi*
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China CAS Center for Excellence in Life and Paleoenvironment, Beijing100044, China
Anmin Duan
Affiliation:
State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing100029, China University of Chinese Academy of Sciences, Beijing100049, China
Qiuzhen Yin
Affiliation:
Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve1348, Belgium
John T Bruun
Affiliation:
College of Engineering, Mathematics and Physics Sciences, University of Exeter, Exeter, UK College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, UK
Cunde Xiao
Affiliation:
State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing100875, China
Zhengtang Guo
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China CAS Center for Excellence in Life and Paleoenvironment, Beijing100044, China University of Chinese Academy of Sciences, Beijing100049, China
*
*Corresponding author at: Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China. E-mail address: [email protected] (F. Shi).

Abstract

The Qinghai–Tibetan Plateau and Arctic both have an important influence on global climate, but the correlation between climate variations in these two regions remains unclear. Here we reconstructed and compared the summer temperature anomalies over the past 1,120 yr (900–2019 CE) in the Qinghai–Tibetan Plateau and Arctic. The temperature correlation during the past millennium in these two regions has a distinct centennial variation caused by volcanic eruptions. Furthermore, the abrupt weak-to-strong transition in the temperature correlation during the sixteenth century could be analogous to this type of transition during the Modern Warm Period. The former was forced by volcanic eruptions, while the latter was controlled by changes in greenhouse gases. This implies that anthropogenic, as opposed to natural, forcing has acted to amplify the teleconnection between the Qinghai–Tibetan Plateau and Arctic during the Modern Warm Period.

Type
Thematic Set: Eurasian Climate and Environment
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bradley, R.S., Jones, P.D., 1993. 'Little Ice Age' summer temperature variations: their nature and relevance to recent global warming trends. The Holocene 3, 367376. https://doi.org/10.1177/095968369300300409CrossRefGoogle Scholar
Cheng, H., Edwards, R.L., Sinha, A., Spötl, C., Yi, L., Chen, S.T., Kelly, M., et al. , 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640646. https://doi.org/10.1038/nature18591CrossRefGoogle ScholarPubMed
Christiansen, B., 2011. Reconstructing the NH mean temperature: Can underestimation of trends and variability be avoided? Jounal of Climate 24, 674692. https://doi.org/10.1175/2010JCLI3646.1CrossRefGoogle Scholar
Christiansen, B., Ljungqvist, F.C., 2017. Challenges and perspectives for large-scale temperature reconstructions of the past two millennia. Reviews of Geophysics 55, 4096. https://doi.org/10.1002/2016RG000521CrossRefGoogle Scholar
Clemens, S.C., Holbourn, A., Kubota, Y., Lee, K.E., Liu, Z., Chen, G., Nelson, A., et al. , 2018. Precession-band variance missing from East Asian monsoon runoff. Nature Communications 9, 3364. https://doi.org/10.1038/s41467-018-05814-0CrossRefGoogle ScholarPubMed
Cook, E.R., Krusic, P.J., Anchukaitis, K.J., Buckley, B.M., Nakatsuka, T., Sano, M., PAGES Asia2k Members, 2013. Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C.E.. Climate Dynamics 41, 29572972. https://doi.org/10.1007/s00382-012-1611-xCrossRefGoogle Scholar
Evans, M., Goosse, H., Khatiwala, S., 2017. Proxy System modeling and data assimilation in paleosciences. PAGES Magazine 25, 119. https://doi.org/10.22498/pages.25.2.119CrossRefGoogle Scholar
Fang, K.Y., Gou, X.H., Chen, F.H., Li, J.B., D'Arrigo, R., Cook, E.R., Yang, T., et al. , 2010. Reconstructed droughts for the southeastern Tibetan Plateau over the past 568 years and its linkages to the Pacific and Atlantic Ocean climate variability. Climate Dynamics 35, 577585. https://doi.org/10.1007/s00382-009-0636-2CrossRefGoogle Scholar
Gao, K.L., Duan, A.M., Chen, D.L., Wu, G.X., 2019. Surface energy budget diagnosis reveals possible mechanism for the different warming rate among Earth's three poles in recent decades. Science Bulletin 64, 11401143. https://doi.org/10.1016/j.scib.2019.06.023CrossRefGoogle Scholar
Ge, Q.S., Zheng, J.Y., Hao, Z.X., Shao, X.M., Wang, W.C., Luterbacher, J., 2010. Temperature variation through 2000 years in China: An uncertainty analysis of reconstruction and regional difference. Geophysical Research Letters 37, L03703, https://doi.org/10.1029/2009GL041281CrossRefGoogle Scholar
Goosse, H., Crespin, E., Dubinkina, S., Loutre, M.-F., Mann, M.E., Renssen, H., Sallaz-Damaz, Y., et al. , 2012. The role of forcing and internal dynamics in explaining the “Medieval Climate Anomaly.” Climate Dynamics 39, 28472866. https://doi.org/10.1007/s00382-012-1297-0CrossRefGoogle Scholar
Greenland Ice core Project (GRIP) Members, 1993. Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364, 203207. https://doi.org/10.1038/364203a0CrossRefGoogle Scholar
Jones, P.D., Lister, D.H., Osborn, T.J., Harpham, C., Salmon, M., Morice, C.P., 2012. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research 117, D05127, https://doi.org/10.1029/2011JD017139CrossRefGoogle Scholar
Jungclaus, J.H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L.P., Egorova, T., et al. , 2017. The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations. Geoscientific Model Development 10, 40054033. https://doi.org/10.5194/gmd-10-4005-2017CrossRefGoogle Scholar
Kaufman, D.S., Schneider, D.P., McKay, N.P., Ammann, C.M., Bradley, R.S., Briffa, K.R., Miller, G.H., et al. , 2009. Recent warming reverses long-term Arctic cooling. Science 325, 12361239. https://doi.org/10.1126/science.1173983CrossRefGoogle ScholarPubMed
Liang, E.Y., Shao, X.M., Qin, N.S, 2008. Tree-ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau. Global and Planetary Change 61, 313320. https://doi.org/10.1016/j.gloplacha.2007.10.008CrossRefGoogle Scholar
Liu, J.B., Chen, S.Q., Chen, J.H., Zhang, Z.P., Chen, F.H., 2017. Chinese cave δ18O records do not represent northern East Asian summer monsoon rainfall. Proceedings of the National Academy of Sciences of the United States of America 114, E2987E2988. https://doi.org/10.1073/pnas.1703471114CrossRefGoogle Scholar
Liu, Y., An, Z.S., Linderholm, H.W., Chen, D.L., Song, H.M., Cai, Q.F., Sun, J.Y., et al. , 2009. Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Science in China Series D: Earth Sciences 52, 348359. https://doi.org/10.1007/s11430-009-0025-zCrossRefGoogle Scholar
Li, X., Che, T., Li, X.W., Wang, L., Duan, A.M., Shangguan, D.H., Pan, X.D., et al. , 2020. CASEarth Poles: Big data for the three poles. Bulletin of the American Meteorological Society 101, E1475E1491. https://doi.org/10.1175/BAMS-D-19-0280.1CrossRefGoogle Scholar
Luterbacher, J., Werner, J.P., Smerdon, J.E., Fernández-Donado, L., González-Rouco, F.J., Barriopedro, D., Ljungqvist, F.C., et al. , 2016. European summer temperatures since Roman times. Environomental Research Letters 11, 024001. https://doi.org/10.1088/1748-9326/11/2/024001CrossRefGoogle Scholar
Mann, M.E., Bradley, R.S., Hughes, M.K., 1998. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392, 779787. https://doi.org/10.1038/33859CrossRefGoogle Scholar
Mann, M.E., Park, J., Bradley, R.S., 1995. Global interdecadal and century-scale climate oscillations during the past five centuries. Nature 378, 266270. https://doi.org/10.1038/378266a0CrossRefGoogle Scholar
Matsikaris, A., Widmann, M., Jungclaus, J., 2015. On-line and off-line data assimilation in palaeoclimatology: a case study. Climate of the Past 11, 8193. https://doi.org/10.5194/cp-11-81-2015CrossRefGoogle Scholar
McKay, N.P., Kaufman, D.S., 2014. An extended Arctic proxy temperature database for the past 2,000 years. Scientific Data 1, 140026. https://doi.org/10.1038/sdata.2014.26CrossRefGoogle ScholarPubMed
McShane, B.B., Wyner, A.J., 2011. A statistical analysis of multiple temperature proxies: Are reconstructions of surface temperatures over the last 1000 years reliable? The Annals of Applied Statistics 5, 544. https://doi.org/10.1214/10-AOAS398Google Scholar
Neukom, R., Barboza, L.A., Erb, M.P., Shi, F., Emile-Geay, J., Evans, M.N., Franke, J., et al. , 2019a. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nature Geoscience 12, 643649. https://doi.org/10.1038/s41561-019-0400-0Google Scholar
Neukom, R., Gergis, J., Karoly, D.J., Wanner, H., Curran, M., Elbert, J., González-Rouco, F., et al. , 2014. Inter-hemispheric temperature variability over the past millennium. Nature Climate Change 4, 362367. https://doi.org/10.1038/nclimate2174CrossRefGoogle Scholar
Neukom, R., Steiger, N., Gómez-Navarro, J.J., Wang, J.H., Werner, J.P., 2019b. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571, 550554. https://doi.org/10.1038/s41586-019-1401-2CrossRefGoogle Scholar
Otto-Bliesner, B.L., Brady, E.C., Fasullo, J., Jahn, A., Landrum, L., Stevenson, S., Rosenbloom, N., et al. , 2016. Climate variability and change since 850 C.E.: An ensemble approach with the Community Earth System Model (CESM). Bulletin of the American Meteorological Society 97, 735754. https://doi.org/10.1175/BAMS-D-14-00233.1CrossRefGoogle Scholar
Pithan, F., Mauritsen, T., 2014. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience 7, 181184. https://doi.org/10.1038/ngeo2071CrossRefGoogle Scholar
Qian, C., 2016. Disentangling the urbanization effect, multi-decadal variability, and secular trend in temperature in eastern China during 1909–2010. Atmospheric Science Letters 17, 177182. https://doi.org/10.1002/asl.640CrossRefGoogle Scholar
Riedwyl, N., Kuttel, M., Luterbacher, J., Wanner, H., 2009. Comparison of climate field reconstruction techniques: application to Europe. Climate Dynamics 32, 381395. https://doi.org/10.1007/s00382-008-0395-5CrossRefGoogle Scholar
Sano, M., Shi, F., Nakatsuka, T., Asia2k members, 2012. 2nd workshop of the PAGES Asia2k working group. PAGES Magazine 20, 93. https://doi.org/10.22498/pages.20.2.93Google Scholar
Schmidt, G.A., Jungclaus, J.H., Ammann, C.M., Bard, E., Braconnot, P., Crowley, T.J., Delaygue, G., et al. , 2012. Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geoscientific Model Development 5, 185191. https://doi.org/10.5194/gmd-5-185-2012CrossRefGoogle Scholar
Sévellec, F., Fedorov, A.V., Liu, W., 2017. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nature Climate Change 7, 604610. https://doi.org/10.1038/nclimate3353CrossRefGoogle Scholar
Shi, F., Fang, K.Y., Xu, C.X., Guo, Z.T., Borgaonkar, H.P., 2017a. Interannual to centennial variability of the South Asian summer monsoon over the past millennium. Climate Dynamics 49, 28032814. https://doi.org/10.1007/s00382-016-3493-9CrossRefGoogle Scholar
Shi, F., Ge, Q.S., Yang, B., Li, J.P., Yang, F.M., Ljungqvist, F.C., Solomina, O., et al. , 2015. A multi-proxy reconstruction of spatial and temporal variations in Asian summer temperatures over the last millennium. Climatic Change 131, 663676. https://doi.org/10.1007/s10584-015-1413-3CrossRefGoogle Scholar
Shi, F., Yang, B., Ljungqvist, F.C., Yang, F.M., 2012. Multi-proxy reconstruction of Arctic summer temperatures over the past 1400 years. Climate Research 54, 113128. https://doi.org/10.3354/cr01112CrossRefGoogle Scholar
Shi, F., Yang, B., Mairesse, A., von Gunten, L., Li, J.P., Bräuning, A., Yang, F.M., et al. , 2013. Northern Hemisphere temperature reconstruction during the last millennium using multiple annual proxies. Climate Research 56, 231244. https://doi.org/10.3354/cr01156CrossRefGoogle Scholar
Shi, F., Zhao, S., Guo, Z.T., Goosse, H., Yin, Q.Z., 2017b. Multi-proxy reconstructions of May–September precipitation field in China over the past 500 years. Climate of the Past 13, 19191938. https://doi.org/10.5194/cp-13-1919-2017CrossRefGoogle Scholar
Tao, S.Y., Ding, Y.H., 1981. Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bulletin of the American Meteorological Society 62, 2330. https://doi.org/10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Tardif, R., Hakim, G.J., Perkins, W.A., Horlick, K.A., Erb, M.P., Emile-Geay, J., Anderson, D.M., et al. , 2019. Last millennium reanalysis with an expanded proxy database and seasonal proxy modeling. Climate of the Past 15, 12511273. https://doi.org/10.5194/cp-15-1251-2019CrossRefGoogle Scholar
Thompson, L.G., Mosley-Thompson, E., Brecher, H., Davis, M., Leon, B., Les, D., Lin, P.N., et al. , 2006. Abrupt tropical climate change: Past and present. Proceedings of the National Academy of Sciences of the United States of America 103, 1053610543. https://doi.org/10.1073/pnas.0603900103CrossRefGoogle ScholarPubMed
Wang, J.L., Yang, B., Qin, C., Kang, S.Y., He, M.H., Wang, Z.Y., 2014. Tree-ring inferred annual mean temperature variations on the southeastern Tibetan Plateau during the last millennium and their relationships with the Atlantic Multidecadal Oscillation. Climate Dynamics 43, 627640. https://doi.org/10.1007/s00382-013-1802-0CrossRefGoogle Scholar
Wang, N.L., Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Yao, T.D., Pu, J.C., 2003. Influence of variations in NAO and SO on air temperature over the northern Tibetan Plateau as recorded by δ18O in the Malan ice core. Geophysical Research Letters 30, 2167. https://doi.org/10.1029/2003GL018188Google Scholar
Wang, S.W., Wen, X.Y., Luo, Y., Dong, W.J., Zhao, Z.C., Yang, B., 2007. Reconstruction of temperature series of China for the last 1000 years. Chinese Science Bulletin 52, 32723280. https://doi.org/10.1007/s11434-007-0425-4CrossRefGoogle Scholar
Wang, Z.G., Hoffmann, T., Six, J., Kaplan, J.O., Govers, G., Doetterl, S., Van Oost, K., 2017. Human-induced erosion has offset one-third of carbon emissions from land cover change. Nature Climate Change 7, 345349. https://doi.org/10.1038/nclimate3263CrossRefGoogle Scholar
Werner, J.P., Divine, D.V., Ljungqvist, F.C., Nilsen, T., Francus, P., 2018. Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia. Climate of the Past 14, 527557. https://doi.org/10.5194/cp-14-527-2018CrossRefGoogle Scholar
Wu, G.X., Liu, Y.M., He, B., Bao, Q., Duan, A.M., Jin, F.F., 2012. Thermal controls on the Asian Summer Monsoon, Scientific Reports 2, 404, https://doi.org/10.1038/srep00404CrossRefGoogle ScholarPubMed
Wu, Z.H., Huang, N.E., 2009. Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in Adaptive Data Analysis 1, 141. https://doi.org/10.1142/S1793536909000047CrossRefGoogle Scholar
Yang, B., Bräeuning, A., Shi, Y.F., 2003. Late Holocene temperature fluctuations on the Tibetan Plateau. Quaternary Science Reviews 22, 23352344. https://doi.org/10.1016/S0277-3791(03)00132-XGoogle Scholar
Yao, T.D., Duan, K.Q., Thompson, L.G., Wang, N.L., Tian, L.D., Xu, B.Q., Wang, Y.Q., et al. , 2007. Temperature variations over the past millennium on the Tibetan Plateau revealed by four ice cores. Annals of Glaciology 46, 362366. https://doi.org/10.3189/172756407782871305CrossRefGoogle Scholar
Yao, T.D., Thompson, L.G., Yang, W., Yu, W.S., Gao, Y., Guo, X.J., Yang, X.X., et al. , 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change 2, 663667. https://doi.org/10.1038/nclimate1580CrossRefGoogle Scholar
Yao, T.D., Xue, Y.K., Chen, D.L., Chen, F.H., Thompson, L.G., Cui, P., Koike, T., et al. , 2019. Recent third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bulletin of the American Meteorological Society 100, 423444. https://doi.org/10.1175/BAMS-D-17-0057.1CrossRefGoogle Scholar
Zhou, B.T., Wen, H.Q., Xu, Y., Song, L.C., Zhang, X.B., 2014. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. Journal of Climate 27, 65916611. https://doi.org/10.1175/JCLI-D-13-00761.1CrossRefGoogle Scholar
Zou, H., Hastie, T., 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (statistical methodology) 67, 301320. https://doi.org/10.1111/j.1467-9868.2005.00503.xCrossRefGoogle Scholar
Supplementary material: PDF

Shi et al. supplementary material

Shi et al. supplementary material

Download Shi et al. supplementary material(PDF)
PDF 661.6 KB