Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-18T14:13:02.588Z Has data issue: false hasContentIssue false

Mixture Analysis and Mammalian Sex Ratio Among Middle Pleistocene Mouflon of Arago Cave, France

Published online by Cambridge University Press:  20 January 2017

Hervé Monchot*
Affiliation:
Laboratoire d'Anthropologie, Faculté de Médecine-secteur nord, Bd Pierre Dramard, 13916, Marseille Cedex 20, France

Abstract

In archaeological studies, it is often important to be able assess sexual dimorphism and sex ratios in populations. Obtaining sex ratio is easy if each individual in the population can be accurately sexed through the use of one more objective variables. But this is often impossible, due to incompleteness of the osteological record. A modern statistical approach to handle this problem is Mixture Analysis using the method of maximum likelihood. It consists of determining how many groups are present in the sample, two in this case, in which proportions they occur, and to estimate the parameters accordingly. This paper shows the use of this method on vertebrate fossil populations in a prehistoric context with implications on prey acquisition by early humans. For instance, the analysis of mouflon bones from Arago cave (Tautavel, France) indicates that there are more females than males in the F layer. According to the ethology of the animal, this indicates that the hunting strategy could be the result of selective choice of the prey. Moreover, we may deduce the presence of Anteneandertalians on the site during spring and summer periods.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Airoldi, J.P., Flury, B.D., Salvioni, M. (1995). Discrimination between two species of Microtus using both classified and unclassified observations. Journal of Theoretical Biology. 17, 247262.Google Scholar
Aitkin, M., Wilson, G.T. (1980). Mixture models, outliers, and the EM algorithm. Technometrics. 22, 325332.CrossRefGoogle Scholar
Altuna, J. (1978). Dimorphisme sexuel dans le squelette postcéphalique de Capra pyrenaica pendant le Würm final. Munibe. 30, 201214.Google Scholar
Binford, L.R. (1978). Nunamiut Ethnoarchaeology. Academic Press, New York.Google Scholar
Boessneck, J., Müller, H.-H., Teichert, M. (1964). Osteologische Unterscheidungsmerkmale zwiscken Schaf (Ovis aries Linné) und Ziege (Capra hircus Linné). Kühn-Archiv. 78, 1129.Google Scholar
Desse, J., Chaix, L. (1983). Les bouquetins de l'Observatoire (Monaco) et des Baoussé Roussé (Grimaldi, Italie). Seconde partie: métapodes et phalanges. Bulletin du Musée d'Anthropologie préhistorique de Monaco. 27, 149.Google Scholar
Desse, J., Chaix, L. (1991). Les bouquetins de l'Observatoire (Monaco) et des Baoussé Roussé (Grimaldi, Italie). Troisième partie: stylopode, zeugopode, calcanéus et talus. Bulletin du Musée d'Anthropologie préhistorique de Monaco. 34, 5173.Google Scholar
Diaconis, P., Efron, B. (1983). Computer-intensive methods in statistics. Scientific American. 248, 116130.CrossRefGoogle Scholar
Do, K., McLachan, G.J. (1984). Estimation of mixing proportions: a case study. Applied Statistics. 33, 134140.CrossRefGoogle Scholar
Dong, Z. (1997). Mixture analysis and its preliminary application in archaeology. Journal of Archaeological Science. 24, 141161.CrossRefGoogle Scholar
Efron, B. (1990). The jackknife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics, Philadelphia.Google Scholar
Everitt, B.S. (1984). Maximum likelihood estimation of the parameters in a mixture analysis of two univariate normal distributions; a comparison of different algorithms. The Statistician. 33, 205215.Google Scholar
Flury, B.D., Airoldi, J.-P., Biber, J.-P. (1992). Gender identification of water pipits (Anthus spinoletta) using mixtures of distributions. Journal of Theoretical Biology. 158, 465480.Google Scholar
Geist, V. (1971). Mountain sheep. A study in behavior and Evolution. University of Chicago Press, Chicago.Google Scholar
Ghose, B.K. (1970). Statistical analysis of mixed fossil populations. Mathematical Geology. 2, 265276.CrossRefGoogle Scholar
Hosmer, D.W. (1973). A comparison of iterative maximum likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample. Biometrics. 29, 761770.Google Scholar
Josephson, S.C., Juell, K.E., Rogers, A.R. (1996). Estimating sexual dimorphism by Method-of-Moments. American Journal of Physical Anthropology. 100, 191206.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Klein, R.G., Cruz-Uribe, K. (1984). The Analysis of Animal Bones from Archaeological Sites. University of Chicago Press, Chicago.Google Scholar
Lumley de, M.-A. (1973). Anténéandertaliens et Néandertaliens du bassin méditerranéen occidental européen. Études Quaternaires. 2, 1626.Google Scholar
Lumley de, H., Fournier, A., Park, Y.C., Yokoyama, Y., Demouy, A. (1984). Stratigraphie du remplissage Pléistocène moyen de la Caune de l'Arago à Tautavel. Étude de huit carottages effectués de 1981 à 1983. L'Anthropologie. 88, 518.Google Scholar
Lyman, R.L. (1984). Bone density and differential survivorship of fossil classes. Journal of Anthropological Archaeology. 3, 221236.Google Scholar
Lyman, R.L. (1987). On the analysis of vertebrate mortality profiles: sample size, mortality type, and hunting pressure. American Antiquity. 89, 125142.CrossRefGoogle Scholar
Lyman, R.L. (1992). Anatomical considerations of utility curves in zooarchaeology. Journal of Archaeological Science. 19, 722.Google Scholar
Marean, C.W. (1998). A critique of evidence for scavenging by Neandertals and early modern humans: new data from Kobeh Cave (Zagros Mountains, Iran) and Die Kelders Cave 1 Layer 10 (South Africa). Journal of Human Evolution. 35, 111136.Google Scholar
Mariezkurrena, K., Altuna, J. (1983). Biometria y diformismo sexual en el esqueleto de Cervus elaphus würmiense, postwürmiense y actual del Cantabrico. Munibe. 35, 203246.Google Scholar
Monchot, H. (1996). La consommation du mouflon (Ovis antiqua Pommerol, 1879) au Pléistocène moyen à la Caune de l'Arago (Tautavel, Pyrénées-Orientales). Géologie Méditerranéenne. 23, 101115.CrossRefGoogle Scholar
Monchot, H. (1997). La fragmentation des os longs du mouflon de la Caune de l'Arago (Tautavel, France): une origine anthropique. Paléo. 9, 5563.Google Scholar
Monchot, H. (1999). La caza del Muflón (Ovis antiqua Pommerol, 1879) en el Pleistoceno medio de los Pirineos: el ejemplo de la cueva de l'Aragó (Tautavel, Francia). Revista Española de Paleontologia. 14, 6778.Google Scholar
Payne, S. (1973). Kill of patterns of sheep and goats: the mandibles from Asvan Kale. Anatolian studies. 23, 281303.Google Scholar
Pearson, K. (1894). Contribution to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London serie A. 185, 71110.Google Scholar
Pfeffer, P. (1967). Le mouflon de Corse (Ovis ammon musimon Schreber, 1782); position systématique, écologie et éthologie comparées. Mammalia. 31, 1262.Google Scholar
Pommerol, F. (1879). Le mouflon quaternaire. Association Française Avancement des Sciences. 600609.Google Scholar
Prummel, W., Frisch, H.-J. (1986). A guide for distinction of species, sex and body size in bones of sheep and goats. Journal of Archaeological Science. 13, 567577.Google Scholar
Speth, J.D. (1983). Bison Kills and Bone Counts: Decision Making by Ancient Hunters. University of Chicago Press, Chicago.Google Scholar
Stiner, M.C. (1990). The use of mortality patterns in archaeological studies of hominid predatory adaptations. Journal of Anthropological Archaeology. 9, 305351.Google Scholar
Stiner, M.C., Achyuthan, H., Arsebük, G., Howell, F.C., Josephson, S.C., Juell, K.E., Pigati, J., Quade, J. (1998). Reconstructing cave bear paleoecology from skeletons: a cross-disciplinary study of middle Pleistocene bears from Yarimburgaz cave, Turkey. Paleobiology. 24, 7498.CrossRefGoogle Scholar
Tan, W.Y., Chang, W.C. (1972). Some comparisons of the method of the moments and the method of the maximum likelihood in estimating parameters of a mixture of two normal densities. Journal of the American Statistical Association. 67, 702708.Google Scholar
Thode, H.C., Finch, S.J., Mendell, N.R. (1988). Simulated percentage points for the null distribution of the likelihood ratio test for a mixture of two normals. Biometrics. 44, 11951201.CrossRefGoogle ScholarPubMed