Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T06:15:35.279Z Has data issue: false hasContentIssue false

Mid-Pleistocene drainage rearrangement of the Dadu River in response to plate convergence in southeastern Tibet

Published online by Cambridge University Press:  06 March 2023

Yong Zheng
Affiliation:
Key Laboratory of Deep-Earth Dynamics, Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China, 100037 Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China, 511458 Jiangsu Donghai Continental Deep Hole Crustal Activity National Observation and Research Station, Jiangsu, China, 222300 Department of Geography, Korea University, Seoul, Korea, 02841
Haibing Li*
Affiliation:
Key Laboratory of Deep-Earth Dynamics, Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China, 100037 Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China, 511458 Jiangsu Donghai Continental Deep Hole Crustal Activity National Observation and Research Station, Jiangsu, China, 222300
Jiawei Pan
Affiliation:
Key Laboratory of Deep-Earth Dynamics, Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China, 100037 Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China, 511458 Jiangsu Donghai Continental Deep Hole Crustal Activity National Observation and Research Station, Jiangsu, China, 222300
Zheng Gong
Affiliation:
Institute of Geophysics, China Earthquake Administration, Beijing, China, 100081
Ping Wang
Affiliation:
Geophysical Exploration Center, China Earthquake Administration, Zhengzhou, China, 450002
Ya Lai
Affiliation:
Key Laboratory of Deep-Earth Dynamics, Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China, 100037 Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China, 511458 Jiangsu Donghai Continental Deep Hole Crustal Activity National Observation and Research Station, Jiangsu, China, 222300
Zhongbao Zhao
Affiliation:
Key Laboratory of Deep-Earth Dynamics, Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China, 100037 Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China, 511458 Jiangsu Donghai Continental Deep Hole Crustal Activity National Observation and Research Station, Jiangsu, China, 222300
Fucai Liu
Affiliation:
Key Laboratory of Deep-Earth Dynamics, Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China, 100037 Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China, 511458 Jiangsu Donghai Continental Deep Hole Crustal Activity National Observation and Research Station, Jiangsu, China, 222300
*
*Corresponding author email address: <[email protected]>

Abstract

The rearrangement of drainage basins provides critical insight into crustal deformation and geodynamic mechanisms. Near the southeastern boundary of the Tibetan Plateau, the Dadu River abruptly shifts from south- to east-flowing, providing important implications for regional tectonogeomorphic development since the mid-Pleistocene. South of the bend, the headwaters of the Anning River occupy an unusually wide valley. Field investigations show that large quantities of fluvial/lacustrine sediments are widespread along the Dadu and Anning rivers and are exposed at their drainage divide. Detrital zircon U-Pb age patterns confirm that these fluvial/lacustrine sediments are the remnants of the paleo-Dadu River, which strongly suggests that the paleo-Dadu River originally flowed southward into the Anning River. The cosmogenic nuclide burial ages of the lacustrine sediments along the Dadu and Anning rivers suggest deposition of these sediments from separate dammed lakes ca. 1.2 Ma ago, ca. 0.6 Ma ago, and ca. 0.9 Ma ago from north to south, respectively. Provenance and burial-age studies indicate that reorganization of the Dadu drainage occurred within the last 0.6 Ma. We propose that this drainage reorganization in southeastern Tibet resulted from progressive convergence between the India and Eurasian plates during the Pleistocene.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.CrossRefGoogle Scholar
Bai, M.K., Chevalier, M.L., Leloup, P.H., Li, H.B., Pan, J.W., Replumaz, A., Wang, S.G., et al. 2021. Spatial slip rate distribution along the SE Xianshuihe fault, eastern Tibet, and earthquake hazard assessment. Tectonics 40, e2021TC006985. https://doi.org/10.1029/2021TC006985.CrossRefGoogle Scholar
Bai, M.K., Chevalier, M.L., Pan, J.W., Replumaz, A., Leloup, P.H., Métois, M., Li, H.B., 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Earth and Planetary Science Letters 485, 1931.10.1016/j.epsl.2017.12.045CrossRefGoogle Scholar
Bruguier, O., Lancelot, J.R., Malavieille, J., 1997. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): provenance and tectonic correlations. Earth and Planetary Science Letters 152, 217231.10.1016/S0012-821X(97)00138-6CrossRefGoogle Scholar
Cao, K., Wang, G., Leloup, P.H., Mahéo, G., Xu, Y., van der Beek, P.A., Replumaz, A., Zhang, K.X., 2019. Oligocene–early Miocene topographic relief generation of southeastern Tibet triggered by thrusting. Tectonics 38, 374391.10.1029/2017TC004832CrossRefGoogle Scholar
Chappel, J., Zheng, H.B., Fifield, K., 2006. Yangtze River sediments and erosion rates from source to sink traced with cosmogenic 10Be: sediments from major rivers. Paleogeography, Palaeoclimatology, Palaeoecology 241, 7994.10.1016/j.palaeo.2006.06.010CrossRefGoogle Scholar
Chen, F.B., Zhao, Y.T., 1989. The Neotectonics in Panzhihua-Xichang Region of China. Sichuan Science and Technology Publishing House, Chengdu. [in Chinese]Google Scholar
Chevalier, M.L., Leloup, P.H., Replumaz, A., Pan, J.W., Metois, M., Li, H.B., 2017. Temporally constant slip-rate along the Ganzi fault, NW Xianshuihe fault system, eastern Tibet. Geological Society of America Bulletin 130, 396410.CrossRefGoogle Scholar
Clark, M.K., House, M.A., Royden, L.H., Whipple, K.X., Burchfiel, B.C., Zhang, X., Chen, L., 2005. Late Cenozoic uplift of southeastern Tibet. Geology 33, 525528.10.1130/G21265.1CrossRefGoogle Scholar
Clark, M.K., Royden, L.H., 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology 28, 703706.10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Clark, M.K., Schoenbohm, L.M., Royden, L.H., Whipple, K.X., Burchfiel, B.C., Zhang, X., Tang, W., Wang, E., Chen, L., 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 23, TC1006. https://doi.org/10.1029/2002TC001402.CrossRefGoogle Scholar
Clift, P.D., Carter, A., Campbell, I.H., Pringle, M.S., Lap, N.V., Allen, C.M., Hodges, K.V., Tan, M.T., 2006. Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam: Provenance and exhumation implications for Southeast Asia. Geochemistry, Geophysics, Geosystems 7, Q10005. https://doi.org/10.1029/2006GC001336.CrossRefGoogle Scholar
Compston, W., Williams, I.S., Kirschvink, J.L., Zhang, Z.C., Ma, G.G., 1992. Zircon U-Pb ages for the early Cambrian time-scale. Journal of the Geological Society, London 149, 171184.10.1144/gsjgs.149.2.0171CrossRefGoogle Scholar
Copley, A., 2008. Kinematics and dynamics of the southeastern margin of the Tibetan Plateau. Geophysical Journal International 174, 10811100.10.1111/j.1365-246X.2008.03853.xCrossRefGoogle Scholar
Deng, B., Chew, D., Mark, C., Liu, S.G., Cogné, N., Jiang, L., Sullivan, G.O., Li, Z.W., Li, J.X., 2020. Late Cenozoic drainage reorganization of the paleo-Yangtze river constrained by multi-proxy provenance analysis of the Paleo-lake Xigeda. Geological Society of American Bulletin 133, 199211.10.1130/B35579.1CrossRefGoogle Scholar
de Sigoyer, J., Vanderhaeghe, O., Duchêne, S., Billerot, A., 2014. Generation and emplacement of Triassic granitoids within the Songpan Ganze accretionary-orogenic wedge in a context of slab retreat accommodated by tear faulting, eastern Tibetan Plateau, China. Journal of Asian Earth Sciences 88, 192216.CrossRefGoogle Scholar
Ding, L., Yang, D., Cai, F.L., Pullen, A., Kapp, P., Gehrels, G.E., Zhang, L.Y., et al., 2013. Provenance analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo-Tethys Ocean. Tectonics 32, 3448.10.1002/tect.20013CrossRefGoogle Scholar
Dong, L., Shen, X.Z., Qian, Y.P., 2020. Study on velocity and density contrasts across the Moho in the southeastern margin of the Tibetan Plateau. Chinese Journal of Geophysics 63, 915927. [in Chinese]Google Scholar
Godard, V., Lavé, J., Carcaillet, J., Cattin, R., Bourlès, D., Zhu, J., 2010. Spatial distribution of denudation in eastern Tibet and regressive erosion of plateau margin. Tectonophysics 491, 253274.10.1016/j.tecto.2009.10.026CrossRefGoogle Scholar
Gourbet, L., Leloup, P.H., Paquette, J.L., Sorrel, P., Maheo, G., Wang, G.C., Xu, Y.D., et al. 2017. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan Plateau evolution. Tectonophysics 700–701, 162179.10.1016/j.tecto.2017.02.007CrossRefGoogle Scholar
Granger, D.E., 2014. 14.7—Cosmogenic nuclide burial dating in archaeology and paleoanthropology. In: Turekian, K., Holland, H. (Eds.), Treatise on Geochemistry, second ed. Elsevier Publishing, Amsterdam, pp. 8197.CrossRefGoogle Scholar
Granger, D.E., Kirchner, J.W., Finkel, R.C., 1997. Quaternary downcutting rate of the New River, Virginia, measured from differential decay of cosmogenic 26Al and 10Be in cave-deposited alluvium. Geology 25, 107110.10.1130/0091-7613(1997)025<0107:QDROTN>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Granger, D.E., Muzikar, P.F., 2001. Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations. Earth and Planetary Science Letters 188, 269281.10.1016/S0012-821X(01)00309-0CrossRefGoogle Scholar
Granger, D.E., Smith, A.L., 2000. Dating buried sediments using radioactive decay and muogenic production of 26Al and 10Be. Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms 172, 822826.10.1016/S0168-583X(00)00087-2CrossRefGoogle Scholar
Gu, Z.Y., Xu, B., , Y.W., Aldahan, A., Lal, D., 2006. 10Be dating of terrace surfaces in Nujiang River valley. Quaternary Sciences 26, 293294. [in Chinese]Google Scholar
He, H.L., Oguchi, T., 2008. Late Quaternary activity of the Zemuhe and Xiaojiang faults in southwest China from geomorphological mapping. Geomorphology 96, 6285.10.1016/j.geomorph.2007.07.009CrossRefGoogle Scholar
He, M.Y., Zheng, H.B., Bookhagen, B., Clift, P.D., 2014. Controls on erosion intensity in the Yangtze River basin tracked by U-Pb detrital zircon dating. Earth-Science Reviews 136, 121140.10.1016/j.earscirev.2014.05.014CrossRefGoogle Scholar
Jiang, F.C., Wu, X.H., Xiao, G.H., 1999. On the age of the Xigeda Formation in Luding, Sichuan, and its neotectonic significance. Acta Geologica Sinica 73, 613. [in Chinese]Google Scholar
Kong, P., Granger, D.E., Wu, F.Y., Caffee, M.W., Wang, Y.J., Zhao, X.T., Zheng, Y., 2009. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River. Earth and Planetary Science Letters 278, 131141.CrossRefGoogle Scholar
Lal, D., Arnold, J.R., 1985. Tracing quartz through the environment. Proceedings of the Indian Academy of Sciences—Earth and Planetary Sciences 94, 15.Google Scholar
Leloup, P.H., Arnaud, N., Lacassin, R., Kienast, J.R., Harrison, T.M., Phan Trong, T.T., Replumaz, A., Tapponnier, P., 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. Journal of Geophysical Research, Solid Earth 106, 66836732.CrossRefGoogle Scholar
Leloup, P.H., Lacassin, R., Tapponnier, P., Schärer, U., Zhong, D.L., Liu, X.H., Zhang, L.S., Ji, S.C., 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina: Tectonophysics 251, 310, 13–84.10.1016/0040-1951(95)00070-4CrossRefGoogle Scholar
Liu-Zeng, J., Zhang, J.Y., McPhillips, D., Reiners, P., Wang, W., Pik, R., Zeng, L.S., et al., 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology. Earth and Planetary Science Letters 490, 6276.10.1016/j.epsl.2018.03.011CrossRefGoogle Scholar
Li, Z.X., Li, X.H., Kinny, P.D., Wang, J., Zhang, S., Zhou, H., 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research 122, 85109.10.1016/S0301-9268(02)00208-5CrossRefGoogle Scholar
Luo, Y.L., Liu, D.S., 1998. Study on depositional environment evolution and cyclic stratigraphy of Xigeda stratum. Quaternary Sciences 4, 373. [in Chinese]Google Scholar
Ma, Z.F., Zhang, H.P., Wang, Y.Z., Tao, Y.L., Li, X.M., 2020. Inversion of Dadu River bedrock channels for the late Cenozoic uplift history of the eastern Tibetan Plateau. Geophysical Research Letters 47, e2019GL086882. https://doi.org/10.1029/2019GL086882.CrossRefGoogle Scholar
McPhillips, D., Hoke, G.D., Liu-Zeng, J., Bierman, P.R., Rood, D.H., Niedermann, S., 2016. Dating the incision of the Yangtze River gorge at the First Bend using three-nuclide burial ages. Geophysical Research Letters 43, 101110.10.1002/2015GL066780CrossRefGoogle Scholar
Meng, Q.R., Wang, E., Hu, J.M., 2005. Mesozoic sedimentary evolution of the northwest Sichuan basin: Implication for continued clockwise rotation of the south China block. Geological Society of America Bulletin 117, 396410.10.1130/B25407.1CrossRefGoogle Scholar
Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics 31, 357396.10.1029/93RG02030CrossRefGoogle Scholar
Ouimet, W.B., Whipple, K.X., Granger, D.E., 2009. Beyond threshold hillslopes: channel adjustment to base-level fall in tectonically active mountain ranges. Geology 37, 579582.10.1130/G30013A.1CrossRefGoogle Scholar
Ouimet, W.B., Whipple, K.X., Royden, L., Reiners, P., Hodges, K., Pringle, M., 2010. Regional incision of the eastern margin of the Tibetan Plateau. Lithosphere 2, 5063.10.1130/L57.1CrossRefGoogle Scholar
Qian, F., Xu, S.J., Chen, F.B., Zhao, Y., 1984. Study on the paleomagnetism of the Xigeda Formation. Mountain Research 2, 275282. [in Chinese]Google Scholar
Replumaz, A., San José, M., Margirier, A., van der Beek, P., Gautheron, C., Leloup, P.H., Ou, X., et al. 2020. Tectonic control on rapid Late Miocene–Quaternary incision of the Mekong River knickzone, southeast Tibetan Plateau. Tectonics 39, e2019TC005782. https://doi.org/10.1029/2019TC005782.CrossRefGoogle Scholar
Roger, F., Malavieille, J., Leloup, P.H., Xu, Z.Q., 2004. Timing of granite emplacement and cooling in the Songpan-Garzê Fold Belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Sciences 22, 465481.CrossRefGoogle Scholar
Shen, X.M., Braun, J., Yuan, X.P., 2022. Southeastern margin of the Tibetan Plateau stopped expanding in the late Miocene. Earth and Planetary Science Letters 583, 117446. https://doi.org/10.1016/j.epsl.2022.117446.CrossRefGoogle Scholar
Shi, X.H., Wang, Y., Sieh, K., Weldon, R., Feng, L.J., Chan, C.H., Liu-Zeng, J., 2017. Fault slip and GPS velocities across the Shan Plateau define a curved southwestward crustal motion around the eastern Himalayan syntaxis. Journal of Geophysical Research, Solid Earth 123, 25022518.10.1002/2017JB015206CrossRefGoogle Scholar
Wang, C.Y., Lou, H., , Z.Y., Wu, J.P., Chang, L.J., Dai, S.G., You, H.C., Tang, F.T., Zhu, L.P., Silver, P., 2008. S-wave crustal and upper mantle's velocity structure in the eastern Tibetan Plateau—deep environment of lower crustal flow. Science in China Series D: Earth Sciences 51, 263274.CrossRefGoogle Scholar
Wang, E., Burchfiel, B.C., 2000. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau. Geological Society of America, Bulletin 112, 413423.2.0.CO;2>CrossRefGoogle Scholar
Wang, E., Burchfiel, B.C., Royden, L.H., Chen, L.Z., Chen, J.S., Li, W.X., Chen, Z.L., 1998. Late Cenozoic Xianshuihe/Xiaojiang and Red River fault systems of southwestern Sichuan and central Yunnan, China. Special Paper, Geological Society of America Bulletin 327, 1108.Google Scholar
Wang, E., Kirby, E., Furlong, K.P., van Soest, M., Shi, X., Kamp, P.J.J., Hodges, K.V., 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience 5, 640645.CrossRefGoogle Scholar
Wang, P., Li, J.P., Liu, C.R., Han, F., Gao, L., Wang, J.C., 2011. Quartz Ti-center in ESR dating of Xigeda formation in Sichuan and contrast with magnetic stratigraphic profiles. Nuclear Techniques 34, 111115. [in Chinese]Google Scholar
Wang, S.B., Zhao, Z.Z., Qiao, Y.S., Jiang, F.C., 2006. Age and paleoenvironment of Xigeda Formation in Luding, Sichuan. Quaternary Sciences 26, 257264. [in Chinese]Google Scholar
Wang, Y.Z., Liu, C.R., Zheng, D.W., Zhang, H.P., Yu, J.X., Pang, J.Z., Li, C.P., Hao, Y.Q., 2021. Multistage exhumation in the catchment of the Anninghe River in the SE Tibetan Plateau: Insights from both detrital thermochronology and Topography analysis. Geophysical Research Letters 48, e2021GL092587. https://doi.org/10.1029/2021GL092587.Google Scholar
Wang, Y.Z., Wang, E.N., Shen, Z.K., Wang, M., Gan, W.J., Qiao, X.J., Meng, G.J., et al., 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Science in China Series D: Earth Sciences 51, 12671283.10.1007/s11430-008-0106-4CrossRefGoogle Scholar
Wei, H.H., Wang, E.C., Wu, G.L., Meng, K., 2016. No sedimentary records indicating southernly flow of the paleo-Upper Yangtze River from the First Bend in southeastern Tibet. Gondwana Research 32, 93104.10.1016/j.gr.2015.02.006CrossRefGoogle Scholar
Weislogel, A.L., 2008. Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleotethys from the Songpan-Ganzi complex, central China. Tectonophysics 451, 331345.CrossRefGoogle Scholar
Wittmann, H., Oelze, M., Gaillardet, J., Garzanti, E., von Blanckenburg, F., 2020. A global rate of denudation from cosmogenic nuclides in the Earth's largest rivers. Earth-Science Reviews 204, 103147. https://doi.org/10.1016/j.earscirev.2020.103147.CrossRefGoogle Scholar
Xia, Y., Xu, X.S., Niu, Y.L., Liu, L., 2018. Neoproterozoic amalgamation between Yangtze and Cathaysia blocks: the magmatism in various tectonic settings and continent-arc-continent collision. Precambrian Research 309, 5687.10.1016/j.precamres.2017.02.020CrossRefGoogle Scholar
Xie, L.W., Zhang, Y.B., Zhang, H.H., Sun, J.F., Wu, F.Y., 2008. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Chinese Science Bulletin 53, 15651573.Google Scholar
Xu, Z.M., 2011. Deposits of Zhaizicun landslide-dammed lake along Jinsha River and its implication for the genesis of Xigeda Formation. Geological Review 57, 675686. [in Chinese]Google Scholar
Xu, Z.Q., 1992. The Orogenic Process of Songpan-Ganzi Orogenic Belt, China. Geological Publishing House, Beijing. [in Chinese]Google Scholar
Yang, R., Suhail, H.A., Gourbet, L., Willett, S.D., Fellin, M.G., Lin, X.B., Gong, J.F., et al., 2020. Early Pleistocene drainage pattern changes in Eastern Tibet: constraints from provenance analysis, thermochronometry, and numerical modeling. Earth and Planetary Science Letters 531, 115955. https://doi.org/10.1016/j.epsl.2019.115955.CrossRefGoogle Scholar
Yao, H.T., Zhao, Z.Z., Qiao, Y.S., Li, C.Z., Wang, S.B., Wang, Y., Chen, Y.S., Jiang, F.C., 2007. Magneto stratigraphic dating of the Xigeda formation in Mianning, Sichuan and its significance. Quaternary Sciences 27, 7485. [in Chinese]Google Scholar
Yuan, F.L., 1957. A complementary study of evolution history of the Yangtze River. Yangtze River 2, 311. [in Chinese]Google Scholar
Zhai, M.G., Liu, W., 2003. Palaeoproterozoic tectonic history of the North China craton: a review. Precambrian Research 122, 183199.10.1016/S0301-9268(02)00211-5CrossRefGoogle Scholar
Zhang, H.P., Oskin, M.E., Liu-Zeng, J., Zhang, P.Z., Reiners, P.W., Xiao, P., 2016. Pulsed exhumation of interior eastern Tibet: implications for relief generation mechanisms and the origin of high-elevation planation surfaces. Earth and Planetary Science Letters 449, 176185.10.1016/j.epsl.2016.05.048CrossRefGoogle Scholar
Zhang, H.P., Zhang, P.Z., Champagnac, J., Molnar, P., Anderson, R.S., Kirby, E., Craddock, W.H., Liu, S.F., 2014. Pleistocene drainage reorganization driven by the isostatic response to deep incision into the northeastern Tibetan Plateau. Geology 42, 303306.10.1130/G35115.1CrossRefGoogle Scholar
Zhang, J.X., 2013. The Nature of the Xigeda Ancestral Basin from Pliocene to Early Pleistocene in Panxi area, Sichuan Province. Master's Thesis, China University of Geosciences (Beijing), Beijing.Google Scholar
Zhang, Y.Q., Li, H.L., Li, J.H., 2010. Middle Pleistocene extension along the eastern margin of Xizang (Tibetan) Plateau and its neotectonic significance. Geological Review 56, 781791. [in Chinese]Google Scholar
Zhang, Y.Z., Replumaz, A., Leloup, P.H., Wang, G.C., Bernet, M., van der Beek, P., Paquette, J.L., Chevalier, M.L., 2017. Cooling history of the Gongga batholith: implications for the Xianshuihe Fault and Miocene kinematics of SE Tibet. Earth and Planetary Science Letters 465, 115.CrossRefGoogle Scholar
Zhang, Z.H., 1994. Late Cenozoic Geology in Middle Segment of Sichuan-Yunnan South-North Tectonic Belt. China Petroleum Press, Beijing. [in Chinese]Google Scholar
Zhang, Z.J., Daly, J.S., Li, C.A., Tyrrell, S., Sun, X.L., Yan, Y., 2017. Sedimentary provenance constraints on drainage evolution models for SE Tibet: evidence from detrital K-feldspar. Geophysical Research Letters 44, 40644073.10.1002/2017GL073185CrossRefGoogle Scholar
Zhao, X.D., Zhang, H.P., Tao, Y.L., Wang, Y., Pang, J.Z., Ma, Y., Zhang, J.W., Ma, Z.F., Xiong, J.G., 2021. Pliocene to Early Pleistocene drainage reorganization in eastern Tibet inferred from detrital zircons. Geophysical Research Letters 48, e2021GL094563. https://doi.org/10.1029/2021GL094563.CrossRefGoogle Scholar
Zhou, M.F., Yan, D.P., Kennedy, A.K., Li, Y.Q., Ding, J., 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze block, South China. Earth and Planetary Science Letters 196, 5167.10.1016/S0012-821X(01)00595-7CrossRefGoogle Scholar
Supplementary material: File

Zheng et al. supplementary material

Tables S1-S3

Download Zheng et al. supplementary material(File)
File 173.6 KB