Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T02:17:20.551Z Has data issue: false hasContentIssue false

Mid-Holocene Hemlock Decline in Eastern North America Linked with Phytophagous Insect Activity

Published online by Cambridge University Press:  20 January 2017

Najat Bhiry
Affiliation:
Centre d'etudes nordiques and Département de géographie, Université Laval, Sainte-Foy, Québec, Canada, G1K 7P4
Louise Filion
Affiliation:
Centre d'etudes nordiques and Département de géographie, Université Laval, Sainte-Foy, Québec, Canada, G1K 7P4

Abstract

Macrofossil evidence indicates that the mid-Holocene hemlock [Tsuga canadensis L. (Carr.)] decline that occurred over a wide area in eastern North America was associated with phytophagous insect activity. In situ hemlock macrofossils and insect remains found in a paludified dunefield at the northern limit of hemlock testify that two defoliation events occurred at 4910 ± 90 and 4200 ± 100 yr B.P., respectively. The sharp coincidence of remains from hemlock needles with chewing damage typical of hemlock looper feeding, head capsules from the hemlock looper (Lambdina fiscellaria) and the spruce budworm (Choristoneura fumiferana), absence of hemlock fruiting remains, and tree-ring anomalies in fossil hemlocks that died prematurely (<165 yr) suggest that defoliation affected hemlock reproductive capacity and pollen productivity, or more likely caused mass mortality. Our findings indicate that defoliation can affect ecosystems for centuries, especially when long-lived tree species are involved.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, T. D. Moeller, R. E., and Davis, M. B. (1986). Pollen in laminated sediments provides evidence of mid-Holocene forest pathogen outbreak. Ecology 67 , 11011105.Google Scholar
Anderson, R. S. Davis, R. B. Miller, N. G., and Stuckenrath, R. (1986). History of late-and post-glacial vegetation and disturbance around Upper South Branch Pond, Northern Maine. Canadian Journal of Botany 64 , 19771986.Google Scholar
Anderson, T. W. (1974). The chesnut pollen decline as a time horizon in lake sediments in eastern North America. Canadian Journal of Earth Sciences 11 , 678685.Google Scholar
Anderson, T. W. (1985). Late-Quaternary pollen records from eastern Ontario, Québec, and Atlantic Canada. In “Pollen Records of Late-Quaternary North American Sediments” (Bryant, V. M. Jr. and Halloway, R. G., Eds.), pp. 281326. American Association of Stratigraphic Palynologists Foundation, Dallas.Google Scholar
Blais, J. R. (1961). Spruce budworm outbreaks in the lower St. Lawrence and Gaspé regions. Forestry Chronicle 37 , 192202.Google Scholar
Carrol, W. J. (1956). History of hemlock looper, Lambdina fiscellaria fiscellaria (Guen.), (Lepidoptera: Geometridae). The Canadian Entmologist 88 , 587599.Google Scholar
Davis, M. B. (1981). Outbreaks of forest pathogens in Quaternary history. In “Proceedings of the Fourth international Palynological Conference,” Vol. 3, pp. 216227. Luchnow.Google Scholar
Davis, M. B. (1983). Holocene vegetational history of the Eastern United States. In “Late Quaternary Environments of the United States: The Holocene” (Wright, H. E. Jr., Ed.), Vol. 2, pp. 166181. Univ. of Minnesota Press, Minneapolis.Google Scholar
Elias, S. A. (1994). “Quaternary Insects and Their Environments.” Smithsonian Institution Press, Washington, DC.Google Scholar
Filion, L. (1987). Holocene development of parabolic dunes in the Central St. Lawrence Lowland. Quaternary Research 28 , 196209.Google Scholar
Filion, L., and Quinty, F. (1993). Macrofossil and tree-ring evidence for a long-term forest succession and Mid-Holocene hemlock decline. Quaternary Research 40 , 8997.Google Scholar
Gaudreau, D. C., and Webb, T. III, (1985). Late Quaternary pollen stratigraphy and isochrones maps for Northeastern United States. In “Pollen Records of Late-Quaternary North American Sediments” (Bryant, V. M. Jr. and Halloway, R. G., Eds), pp. 245280. American Association of Stratigraphic Palynologists Foundation, Dallas.Google Scholar
Greenbank, D. O. (1956). The role of climate and dispersal in the initiation of outbreaks of the spruce budworm in New Brunswick. I. The role of climate. Canadian Journal of Zoology 34 , 453476.Google Scholar
Grehan, J. R. Parker, B. L., and Dearborn, R. G. (1994). Description of the first and final instar of the hemlock loopers Lambdina athasaria (Walker) and Lambdina fiscellaria (Guenée) (Lepidoptera: Geometridae). The Canadian Entmologist 6 , 15051514.Google Scholar
Houston, D. R. (1992). A host-stress-saprogen model for forest dieback-decline diseases. In “Forest Decline Concepts” (Manion, P. D. and Lachance, D., Eds), pp. 315. American Phytopathological Society Press, St. Paul.Google Scholar
MacDonald, G. M. Edwards, T. M. Moser, K. Pienitz, A. R., and Smol, J. P. (1993). Rapid response of treeline vegetation and lakes to past climate warming. Nature 361 , 243246.Google Scholar
Manion, P. D., and Lachance, D. (Eds.) (1992). “Forest Decline Concepts.” American Phytopathological Society Press, St. Paul.Google Scholar
Martineau, R. (1985). “Insectes nuisibles des forêts de I’Est du Canada.” Broquet, LaPrairie, Québec.Google Scholar
Mattson, W. J., and Haack, R. A. (1987). The role of drought in outbreaks of plant-eating insects. BioScience 37 , 110118.Google Scholar
Mott, R. J. (1975). Palynological studies of lake sediment profiles from southwestern New Brunswick. Canadian Journal of Earth Sciences 12 , 273288.Google Scholar
Peglar, S. M. (1993). The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: A year-by-year pollen stratigraphy from annual laminations. The Holocene 3 , 113.Google Scholar
Perry, I., and Moore, P. D. (1987). Dutch elm disease as an analogue of Neolithic elm decline. Nature 236 , 272273.Google Scholar
Pilon, J. G., and Blais, J. R. (1960). Weather and outbreaks of the spruce budworm in the Province of Quebec from 1939 to 1956. The Canadian Entomologist 93 , 118123.Google Scholar
Richard, P. J. H. (1973). Histoire postglaciaire comparée de la végétation dans deux localités au sud de la ville de Québec. Naturaliste Canadien, 100 , 591603.Google Scholar
Ritchie, J. C. (1987). “Postglacial Vegetation of Canada.” Cambridge Univ. Press, Cambridge.Google Scholar
Stuiver, M., and Reimer, P. J. (1993). Extended 14C data base revised Calib 3.0 14C age calibration program. Radiocarbon 35 , 215230.Google Scholar
Terasmae, J. (1960). Contribution to canadian palynology. No. 2. Bulletin, Geological Survey of Canada, No. 56.Google Scholar
Warner, B. G. Tolonen, K., and Tolonen, M. (1991). A postclacial history of vegetation and bog formation at Point Escuminac, New Brunswick. Canadian Journal of Earth Sciences 28 , 15721582.Google Scholar
Wellington, W. G. (1952). Air mass climatology of Ontario north of Lake Huron and Lake Superior before outbreaks of the spruce budworm, Choristoneura fumiferana (Clemn.) and the forest tent caterpillar, Malacosoma disstria Hbn (Lepidoptera, Tortricidae; Lasiocampidae). Canadian Journal of Zoology 30 , 114127.Google Scholar
Winkler, M. G. (1988). Effect of climate on development of two Sphagnum bogs in southcentral Wisconsin. Ecology 69 , 10321043.Google Scholar
Winkler, M. G. Swain, A. M., and Kutzbach, J. E. (1986). Middle Holocene dry period in the Northern Midwestern United States: Lake levels and pollen stratigraphy. Quaternary Research 25 , 235250.Google Scholar