Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T06:24:28.665Z Has data issue: false hasContentIssue false

Middle Stone Age starch acquisition in the Niassa Rift, Mozambique

Published online by Cambridge University Press:  20 January 2017

Julio Mercader*
Affiliation:
Department of Archaeology, University of Calgary, 2500 University Drive, NW. Calgary, Canada Ab T2N 1N4
Tim Bennett
Affiliation:
Department of Archaeology, University of Calgary, 2500 University Drive, NW. Calgary, Canada Ab T2N 1N4
Mussa Raja
Affiliation:
Department of Anthropology and Archaeology, Eduardo Mondlane University, Maputo, Mozambique
*
*Corresponding author. Fax: +1 403 282 9567. E-mail address:[email protected] (J. Mercader).

Abstract

The quest for direct lines of evidence for Paleolithic plant consumption during the African Middle Stone Age has led scientists to study residues and use-wear on flaked stone tools. Past work has established lithic function through multiple lines of evidence and the spatial breakdown of use-wear and microscopic traces on tool surfaces. This paper focuses on the quantitative analysis of starch assemblages and the botanical identification of grains from flake and core tools to learn about human ecology of carbohydrate use around the Niassa woodlands, in the Mozambican Rift. The processing of starchy plant parts is deduced from the occurrence of starch assemblages that presumably got attached to stone tool surfaces by actions associated with extractive or culinary activities. Specifically, we investigate starch grains from stone tools recently excavated in northern Mozambique at the site of Mikuyu; which presumably spans the middle to late Pleistocene and represents similar sites found along the Malawi/Niassa corridor that links East, Southern, and Central Africa. Starch was extracted and processed with a diverse tool kit consisting of scrapers, cores, points, flakes, and other kinds of tools. The microbotanical data suggests consumption of seeds, legumes, caryopses, piths, underground storage organs, nuts, and mesocarps from more than a dozen families. Our data suggest a great antiquity for starch use in Africa as well as an expanded diet and intensification.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barton, H., (2005). The case for rainforest foragers: the starch record at Niah Cave, Sarawak.. Asian Perspectives 44, 5672.CrossRefGoogle Scholar
Barton, H., (2007). Starch residues on museum artefacts: implications for determining tool use.. Journal of Archaeological Science 34, 111.Google Scholar
Barton, H., Torrence, R., Fullagar, R., (1998). Clues to stone tool function re-examined: comparing starch grain frequencies on used and unused obsidian artefacts.. Journal of Archaeological Science 25, 12311238.Google Scholar
Bromage, T., Schrenk, F., Zonneveld, F., (1995). Paleoanthropology of the Malawi Rift: an early hominid mandible from the Chiwondo Beds, Northern Malawi.. Journal of Human Evolution 28, 71108.Google Scholar
Clark, D., (1988). The Middle Stone Age of East Africa and the beginnings of regional identity.. Journal of World Prehistory 2, 235305.CrossRefGoogle Scholar
Clark, D., (1995). Introduction to research on the Chiwondo Beds, Northern Malawi.. Journal of Human Evolution 28, 35.CrossRefGoogle Scholar
Clark, J.D., (2001). Kalambo Falls Prehistoric Site, Vol. III. The Earlier Cultures: Middle and Earlier Stone Age.. Cambridge University Press, Cambridge.Google Scholar
Clark, D., Haynes, C.V., (1970). An elephant butchery site at Mwanganda's Village, Korongo, Malawi, and its relevance for Paleolithic archaeology.. World Archaeology 1, 390411.Google Scholar
Copeland, S.R., (2007). Vegetation and plant food reconstruction of lowermost bed II, Olduvai Gorge, using modern analogs.. Journal of Human Evolution 53, 146175.Google Scholar
da Silva, M.C., Izidine, S., Amude, A.B., (2004). A preliminary checklist of the vascular plants of Mozambique.. Southern African Botanical Diversity Network Report No. 30. SABONET. Pretoria, .Google Scholar
Deacon, H., Deacon, J., (1999). Human Beginnings in South Africa.. David Phillip, Cape Town.Google Scholar
Dickau, R., Ranere, A.J., Cooke, R.G., (2007). Starch grain evidence for the preceramic dispersals of maize and root crops into tropical dry and humid forests of Panama.. Proceedings of the National Academy of Sciences 104, 36513656.CrossRefGoogle ScholarPubMed
Dounias, E., (1993). Preception and use of wild yams by the baka hunter-gatherers in South Cameroon.. Hladik, C.M., Hladik, A., Linares, O.F., Pagezy, H., Semple, A., Hadley, M. Tropical Forests, People and Food: Biocultural Interactions and Applications to Development Parthenon, New York., pp. 621632.Google Scholar
Exell, A.W., Wild, H., (1963). Flora Zambesiaca: Mozambique Federation of Rhodesia and Nyasaland Bechuanaland Protectorate.. University Press Glasgow, Glasgow.Google Scholar
FOA (1998). World Reference Base for Soil Resources.. FAO, Rome.Google Scholar
Fox, F.W., Young, M.E.N., (1982). Food from the Veld.. Delta Books, Cape Town.Google Scholar
Fullagar, R., Field, J., Denham, T., Lentfer, C., (2006). Early and Mid Holocene tool-use and processing of taro (Colocasia esculenta), yam (Dioscorea sp.), and other plants at Kuk Swamp in the highlands of Papua New Guinea.. Journal of Archaeological Science 33, 595614.CrossRefGoogle Scholar
Gama, M., (1990). O Povo Yao.. Instituto de Investigação Científica e Tropical, Lisbon.Google Scholar
Geological Survey of Norway (2004). Metangula/Macaloge/Chiconono.. Ministério dos Recursos Minerais e Energia, Maputo.Google Scholar
Gibbs, G., Watson, L., Koeremoer, M., Smook, L., Barker, N., Anderson, H., Dallwitz, M., (1991). Grasses of Southern Africa..Google Scholar
Hardy, B., Kay, M., Marks, A., Monigal, K., (2001). Stone tool function at the Paleolithic sites of Starosele and Buran Kaya III, Crimea: behavioral implications.. PNAS 98, 1097210977.CrossRefGoogle ScholarPubMed
Haslam, M., (2004). The decomposition of starch grains in soils: implications for archaeological residue analyses.. Journal of Archaeological Science 31, 17151734.CrossRefGoogle Scholar
Hemp, A., (2006). Vegetation of Kilimanjaro: hidden endemics and missing bamboo.. African Journal of Ecology, 44, 305328.CrossRefGoogle Scholar
Hernández-Aguilar, A., Moore, J., Pickering, T.R., (2007). Savanna chimpanzees use tools to harvest the underground storage organs of plants.. PNAS 104, 1921019213.Google Scholar
Hladik, A., Dounias, E., (1993). Wild yams of the African forest as potential food resources.. Hladik, C. Tropical Forests, People, and Food. Biocultural Interactions and Applications to Development UNESCO, Paris., pp. 163176.Google Scholar
Instituto Nacional de Investigação Agronómica (1995). Legenda da Carta Nacional de Solos.. Instituto Nacional de Investigação Agronómica, Maputo.Google Scholar
Kamwendo, J.S., (2005). Flora and Vegetation.. Dudley, C.O. Biological Diversity in Malawi Wildlife and Environmental Society of Malawi, Limbe., pp. 913.Google Scholar
Laden, G., Wrangham, R., (2005). The rise of hominids as an adaptive shift in fallback foods: plant underground storage organs (USOs) and australopith origins.. Journal of Human Evolution 49, 482498.CrossRefGoogle ScholarPubMed
Langejans, G.H.J., (2006). Starch grain analysis on Late Iron Age grind stones from South Africa.. Southern African Humanities 18, 7191.Google Scholar
Lee, R.B., Devore, I., (1968). Man the Hunter.. Aldine, Chicago.Google Scholar
Lombard, M., (2005). Evidence of hunting and hafting during the Middle Stone Age at Sibidu Cave, KwaZulu-Natal, South Africa: a multianalytical approach.. Journal of Human Evolution 48, 279300.Google Scholar
Lorenz, M.G., Wackernagel, W., (1994). Bacterial gene transfer by natural genetic transformation in the environment.. Microbiological Reviews 58, 563602.Google Scholar
Lovett, J.C., Bridson, D.M., Thomas, D.W., (1988). A preliminary list of the moist forest angiosperm flora of Mwanihana Forest Reserve, Tanzania.. Annals of the Missouri Botanical Garden 75, (3) 874885.Google Scholar
Loy, T., Barton, H., (2006). Post-excavation contamination and measures for prevention.. Torrence, R., Barton, H. Ancient Starch Research Left Coast Press, Walnut Creek., pp. 165167.Google Scholar
Loy, T., Spriggs, M., Wickler, S., (1992). Direct evidence for human use of plants 28,000 years ago: starch residues on stone artefacts from the Northern Solomon Islands.. Antiquity 66, 898912.CrossRefGoogle Scholar
Mapaura, A., Timberlake, J., (2004). A Checklist of Zimbabwean Vascular Plants.. Pretoria, Sabonet.Google Scholar
McBrearty, S., Brooks, A., (2000). The revolution that wasn't: a new interpretation of the origin of modern human behavior.. Journal of Human Evolution 39, 453563.CrossRefGoogle ScholarPubMed
McKeague, J.A., (1976). Manual of Soil Sampling and Methods of Analysis.. Soil Research Institute, Ottawa.Google Scholar
McKinney, C., (2001). The uranium-series age of wood from Kalambo Falls.. Clark, J.D. Kalambo Falls Prehistoric Site, Vol. III. The Earlier Cultures: Middle and Earlier Stone Age Cambridge University Press, Cambridge., pp. 665674.Google Scholar
Mercader, J., Barton, H., Gillespie, J., Harris, J., Kuhn, S., Tyler, R., Boesch, C., (2007). 4300-year-old chimpanzee sites and the origins of percussive stone technology.. Proceedings of the National Academy of Sciences 104, 30433048.Google Scholar
Morris, B., (1996). Chewa Medical Botany. A Study of Herbalism in Southern Malawi.. International African Institute, Hamburg.Google Scholar
Palgrave, M., (2002). Trees of Southern Africa.. Struik, Cape Town.Google Scholar
Palgrave, M., Van Wyk, A., Jordaan, M., White, J., Sweet, P., (2007). A reconnaisance survey of the woody flora and vegetation of the Catapu logging concession, Cheringoma District, Mozambique.. Bothalia 37, 5773.Google Scholar
Pearsall, D., Chandler-Ezell, K., Zeidler, J., (2004). Maize in ancient Ecuador: results of residue analysis of stone tools from the Real Alto site.. Journal of Archaeological Science 31, 423442.Google Scholar
Perry, L., (2004). Starch analyses reveal the relationship between tool type and function: an example from the Orinoco valley of Venezuela.. Journal of Archaeological Science 31, 10691081.Google Scholar
Perry, L., Dickau, R., Zarrillo, S., Holst, I., Pearsall, D.M., Piperno, D.R., Berman, M.J., Cooke, R.G., Rademaker, K., Ranere, A.J., Raymond, J.S., Sandweiss, D.H., Scaremalli, F., Tarble, K., Zeidler, J.A., (2007). Starch fossils and the domestication of chili peppers (Capsicum spp. L.) in the Americas.. Science 315, 986988.Google Scholar
Peters, C., Vogel, J., (2005). Africa's wild C4 plant foods and possible early hominid diets.. Journal of Human Evolution 48, 219236.CrossRefGoogle ScholarPubMed
Peters, C.R., O'Brien, E.M., Drummond, R.B., (1992). Edible Wild Plants of Sub-Saharan Africa.. Royal Botanical Gardens, Kew, London.Google Scholar
Phiri, P., (2005). A checklist of Zambian vascular plants.. Pretoria, Sabonet.Google Scholar
Piperno, D., Holst, I., (1998). The Presence of Starch Grains on Prehistoric Stone Tools from the Humid Neotropics: Indications or Early Tuber Use and Agriculture in Panama.. Journal of Archaeological Science 25, 765776.Google Scholar
Piperno, D., Ranere, A.J., Holst, I., Hansell, P., (2000). Starch Grains Reveal Early Root Crop Horticulture in the Panamanian Tropical Forest.. Nature 407, 894897.Google Scholar
Piperno, D., Weiss, E., Holst, I., Nadel, D., (2004). Processing of Wild Cereal Grains in the Upper Palaeolithic Revealed by Starch Grain Analysis.. Nature 430, 670673.Google Scholar
Rapp, G., Hill, C., (1998). Geoarchaeology. The Earth Science Approach to Archaeological Interpretation.. Yale University Press, New Haven.Google Scholar
Sperazza, M., Moore, J.N., Hendrix, M.S., (2004). High-Resolution Particle Size Analysis of Naturally Occuring Very Fine-Grained Sediment Through Laser Diffractometry.. Journal of Sedimentary Research 74, 736743.Google Scholar
Sponheimer, M., de Ruiter, D., Lee-Thorp, J., Späth, A., (2005). Sr/Ca and Early Hominin Diets Revisited: New Data from Modern and Fossil Tooth Enamel.. Journal of Human Evolution 48, 147156.CrossRefGoogle ScholarPubMed
Stahl, A.B., (1984). Hominid dietary selection before fire.. Current Anthropology 25, 151168.Google Scholar
Thierret, J.W., (1958). Economic botany of the cycads.. Economic Botany 12, 341.CrossRefGoogle Scholar
Timberlake, J., Golding, J., Clarke, P., (2004). Niassa Botanical Expedition, June 2003. Biodiversity Foundation for Africa.. Famona (Unpublished report).Google Scholar
Torrence, R., Barton, H., (2006). Ancient Starch Research.. Left Coast Press, Walnut Creek.Google Scholar
Tryon, C.A., (2006). “Early” Middle Stone Age lithic technology of the Kapthurin Formation (Kenya).. Current Anthropology 47, (2) 367375.Google Scholar
Tryon, C.A., McBrearty, S., Texier, P.J., (2005). Levallois Lithic technology from the Kapthurin Formation, Kenya: Acheulian Origin and Middle Stone Age Diversity.. African Archaeological Review 22, 199229.Google Scholar
Van Peer, P., Fullagar, R., Stokes, S., Bailey, R., Moeyersons, J., Steenhoudt, F., Geerts, A., Vanderbeken, M., De Dapper, M., Geus, F., (2003). The Early to Middle Stone Age Transition and the Emergence of Modern Human Behaviour at site 8-B-11, Sai Island, Sudan: SHORT COMMUNICATION.. Journal of Human Evolution 45, 187193.Google Scholar
van Wyk, B., Gericke, N., (2000). People's Plants: A Guide to Useful Plants of Southern Africa.. Briza Publications, Pretoria.Google Scholar
Venter, F., Venter, J., (1996). Making the Most of Indigenous Trees.. Briza Publications, Pretoria.Google Scholar
Victor, J., Koekemoer, M., Fish, L., Smithies, S., Mössmer, M., (2004). Herbarium Essentials: The Southern African Herbarium User Manual. Southern African Botanical Diversity Network Report No. 25.. Pretoria, SABONET.Google Scholar
Wadley, L., Lombard, M., (2007). Small things in perspective: the contribution of our blind tests to micro-residue studies on archaeological stone tools.. Journal of Archaeological Science 34, 10011010.CrossRefGoogle Scholar
Watt, J.M., Breyer-Brandwijk, M.G., (1962). The Medicinal and Poisonous Plants of Southern and Eastern Africa.. E. & S. Livingstone, Edinburgh.Google Scholar
White, F., (1983). The vegetation of Africa: a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa.. Natural Resources Research. Unesco, Paris., pp. 336.Google Scholar
White, T., Asfaw, B., DeGusta, D., Gilbert, H., Richards, G., Suwa, G., Howell, F.C., (2003). Pleistocene Homo sapiens from Middle Awash, Ethiopia.. Nature 742747.Google Scholar
Williamson, B., (2004). Middle Stone Age tool function from residue analysis at Sibudu Cave.. South African Journal of Science 100, 174178.Google Scholar
Williamson, J., (2005). Useful plants of Malawi.. Momfort Press, Limbe.Google Scholar
Williamson, B., (2006). Box 5.4. Investigation of Potential Contamination on Stone Tools.. Torrence, R., Barton, H. Ancient Starch Research 89, Left Coast Press, Walnut Creek.Google Scholar
Wrangham, R., Jones, J., Laden, G., Pilbeam, D., Conklin-Brittain, N., (1999). The raw and the stolen. Cooking and the ecology of human origins.. Current Anthropology 40, 567593.Google Scholar
Yellen, J., Brooks, A., Cornelissen, E., Mehlman, M., Stewart, K., (1995). A Middle Stone Age worked bone industry from Katanda, Upper Semliki Valley, Zaire.. Science 268, 553556.Google Scholar
Yellen, J., Brooks, A., Helgren, D., Tappen, M., Ambrose, S., Bonnefille, R., Feathers, J., Goodfriend, G., Ludwig, K., Renne, P., Stewart, K., (2005). The archaeology of Aduma Middle Stone Age sites in the Awash Valley, Ethiopia.. Paleoanthropology 3, 25100.Google Scholar
Zarrillo, S., Kooyman, B., (2006). Evidence for berry and maize processing on the Canadian plains from starch grain analysis.. American Antiquity 71, .Google Scholar