Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T05:57:46.907Z Has data issue: false hasContentIssue false

Middle Pleistocene age of the fossiliferous sedimentary sequence from Tarija, Bolivia

Published online by Cambridge University Press:  20 January 2017

Bruce J. MacFadden*
Affiliation:
Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
Peter K. Zeitler
Affiliation:
Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA 18015, USA
Federico Anaya
Affiliation:
Facultad de Ingeniería Geológica, Universidad Autónoma Tómas Frías, Potosí, Bolivia
John M. Cottle
Affiliation:
Department of Earth Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
*
*Corresponding author. E-mail address:[email protected] (B.J. MacFadden).

Abstract

The highly fossiliferous sediments of the Tolomosa Formation from Tarija, southern Bolivia, represent one of the most important localities in South America that documents the Great American Biotic Interchange. Over the past several decades, chronostratigraphic studies have indicated a middle Pleistocene age for the Tolomosa Formation from ~ 1.1 to 0.7 Ma. This interval correlates to the Ensenadan South American Land Mammal Age as it is characterized from classic localities in Argentina. Recently, however, a new interpretation based on AMS 14C ages indicates that the fossiliferous sediments from Tarija are latest Pleistocene, i.e., < 44 ka, and thus of Lujanian age. Here we report a new age of 0.76 ± 0.03 Ma (2σ) based on 11 U–Th/Pb and U–Th/He individual determinations from the Tolomosa Formation. This is indistinguishable from the age published from the same ash in 1983, and was originally used to calibrate the magnetostratigraphic section at Tarija. The new age confirms that the age of the Tolomosa Formation is middle Pleistocene, and not latest Pleistocene. The age of the Tarija Fauna has significant implications with regard to the stage of evolution biochronology for Pleistocene fossil mammals in South America, and in particular, the classic and important reference sections in Argentina.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, (2002). 5979.CrossRefGoogle Scholar
Boule, M., and Thévenin, A. Mammifères Fossiles de Tarija. (1920). Imprimerie Nationale, Paris.Google Scholar
Cione, A.I., and Tonni, E.P. Biostratigraphy and chronological scale of uppermost Cenozoic in the Pampean area, Argentina. Rabassa, J., and Salemme, M. Quaternary Vertebrate Paleontology in South America. Quaternary of South America and Antarctic Peninsula 12, (1999). 2351.Google Scholar
Coltorti, M., Abbazzi, L., Ferretti, M.P., Iacumin, P., Paredes Ríos, F., Pelligrini, M., Pieruccini, P., Rustioni, M., Tito, G., and Rook, L. Last Glacial mammals in South America: a new scenario from the Tarija Basin (Bolivia). Naturwissenschaften 94, (2007). 288299.Google Scholar
Coltorti, M., Pieruccini, P., and Paredes, F.R. Late Pleistocene stratigraphy, sedimentology, and paleoenvironmental evolution of the Tarija–Padcaya basin (Bolivian Andes). Proceedings of the Geologists' Association 121, (2010). 162179.CrossRefGoogle Scholar
Crowley, J.L., Schoene, B., and Bowring, S.A. U–Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35, (2007). 11231126.Google Scholar
Flynn, J.J., Swisher, C.C. III Cenozoic South American land mammal ages: correlation to global chronologies. Berggren, W.A., Kent, D.V., Aubry, M.P., and Hardenbol, J. Geochronology Time Scales and Global Stratigraphic Correlation. SEPM (Society for Sedimentary Geology) Special Publication 54, (1995). 317333.Google Scholar
Gasparini, G.M., Soibelzon, E., Zurita, A.E., and Miño-Boilini, A.R. A review of the Quaternary Tayassuidae (Mammalia, Artiodactyla) from the Tarija Valley, Bolivia. Alcheringa 34, (2009). 720.Google Scholar
Gee, J.S., and Kent, D.V. Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. Kono, M. Geomagnetism. Treatise on Geophysics vol. 5, (2007). Elsevier, Amsterdam. 455507.Google Scholar
MacFadden, B.J. Middle Pleistocene climate change recorded in fossil mammal teeth from Tarija, Bolivia, and upper limit of the Ensenadan land-mammal age. Quaternary Research 54, (2000). 121131.Google Scholar
MacFadden, B.J., Siles, O., Zeitler, P., Johnson, N.M., Campbell, K.E. Jr. Magnetic polarity stratigraphy of the middle Pleistocene (Ensenadan) Tarija Formation of southern Bolivia. Quaternary Research 19, (1983). 172187.Google Scholar
Marshall, L.G., Berta, A., Hoffstetter, R., Pascual, R., Reig, O.A., Bombin, M., and Mones, A. Mammals and stratigraphy: geochronology of the continental mammal-bearing Quaternary of South America. Palaeovertebrata: Mémoire Extraordinaire 1984, (1984). 176.Google Scholar
Opdyke, N.D., and Channell, J.E.T. Magnetic Stratigraphy. (1996). Academic Press, San Diego. (346 pp.)Google Scholar
Pareja, J., Vargas, C., Suárez, R., Bállon, R., Carrasco, R., and Villarroel, C. Mapa Geológico de Bolivia. Memoría Explicativa. (1978). Yacimientos Petrolíferos Físcales Bolivianos (YPFB) y Servicio Geológico de Bolivia, La Paz. (27 pp. + maps and charts) Google Scholar
Soibelzon, E., Prevosti, F.J., Bidegain, J.C., Rico, Y., Verzi, D.H., and Tonni, E.P. Correlation of late Cenozoic sequences in southeastern Buenos Aires province: biostratigraphy and magnetostratigraphy. Quaternary International 210, (2009). 5156.Google Scholar
Takai, F., Mizuno, T., Iwasaki, Y., Tanaka, K., Yoshida, A., and Arózqueta Ponce, B. Tarija mammal-bearing formation in Bolivia. The Research Institute of Evolutionary Biology 3, (1982). 172.Google Scholar
Takai, F., Mizuno, T., Yoshida, A., Kondo, H., Arózqueta, P.B., and Lema, C.A. On fossil mammals from the Tarija department. The Research Institute of Evolutionary Biology 4, (1984). 163.Google Scholar
Tonni, E.P., Soibelzon, E., Cione, A.L., Carlini, A., Scillato Yané, G.J., Zurita, A.E., and Paredes Ríos, F. Preliminar [sic] correlation of the Pleistocene sequences of the Tarija valley (Bolivia) with the Pampean chronological standard. Quaternary International 210, (2009). 5765.Google Scholar
Woodburne, M.O. The Great American biotic interchange: dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution 17, (2010). 245264.Google Scholar
Zurita, A.E., Miño-Biolini, Á.R., Soibelzon, E., Carlini, A.A., and Ríos, F.P. The diversity of Glyptodontidae (Xenarthra, Cingulata) in the Tarija Valley (Bolivia): systematic, biostratigraphic and paleobiogeographic aspects of a particular assemblage. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 251/2, (2009). 225237.Google Scholar
Supplementary material: PDF

MacFadden et al. Supplementary Material

Supplementary Material

Download MacFadden et al. Supplementary Material(PDF)
PDF 4.8 MB