Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T08:32:36.106Z Has data issue: false hasContentIssue false

Major controls on architecture, sequence stratigraphy and paleosols of middle Pleistocene continental sediments ("Qc Unit"), eastern central Italy

Published online by Cambridge University Press:  20 January 2017

Claudio Di Celma*
Affiliation:
Scuola di Scienze e Tecnologie, University of Camerino, Italy
Pierluigi Pieruccini
Affiliation:
Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, University of Siena, Italy, China
Piero Farabollini
Affiliation:
Scuola di Scienze e Tecnologie, University of Camerino, Italy
*
*Corresponding author. Fax: + 39 0737402644. E-mail address:[email protected] (C. Di Celma).

Abstract

Middle Pleistocene continental sediments in central Italy ("Qc Unit") record the oldest fluvial accumulation along the uplifting margin of the Peri-Adriatic basin. The architecture of the sediment body can be divided into two unconformity-bounded, fining-upward cycles interpreted as genetically related depositional sequences. These sequences highlight the systematic adjustment of the fluvial system to changes in the ratio between accommodation space and sediment supply (A/S ratio) and from base to top, comprise the following surfaces and stratal components: (i) a regionally correlative sequence boundary resulting from an A/S ratio ≤ 0; (ii) a low-accommodation systems tract characterized by conglomerate-rich, amalgamated channel fills and recording an A/S ratio < 1; (iii) an expansion surface marking the turnaround point from low-accommodation systems tract to high-accommodation systems tract deposits; (iv) a high-accommodation systems tract dominated by floodplain fines encasing lens-like, fluvial channel deposits and denoting an A/S ratio > 1; and (v) a mature red argillic paleosol. To constrain the climatic signal for paleosols formation, the two sequence-capping mature paleosols have been investigated. The results of these studies suggest that they were developed under humid and warm climatic conditions associated with interglacial phases, which have been correlatively attributed to Marine Oxygen Isotope Stages 11 and 9.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostini, S., Bertini, A., Caramiello, S., De Flavis, A.G., Mazza, P., Rossi, M.A., Satolli, S. (2007). A new mammalian bone bed from the lower Middle Pleistocene of Ortona (Chieti, Abruzzo, central Italy). Coccioni, R., Marsili, A. Proceedings of the Giornate di Paleontologia 2005 vol. 12, Grzybowski Foundation, 15.Google Scholar
Aitken, J.F., Flint, S.S. (1995). The application of high-resolution sequence stratigraphy to fluvial systems: a case study from the Upper Carboniferous Breathitt Group, eastern Kentucky, USA. Sedimentology 42, 330.CrossRefGoogle Scholar
Allen, J.P., Fielding, C.F. (2007). Sequence architecture within a low-accommodation setting: an example from the Permian of the Galilee and Bowen basins, Queensland, Australia. American Association of Petroleum Geologists Bulletin 91, 15031539.Google Scholar
Allen, J.P., Fielding, C.F., Rygel, M.C., Gibling, M.R. (2013). Deconvolving signals of tectonic and climatic controls from continental basins: an example from the Late Paleozoic Cumberland Basin, Atlantic Canada. Journal of Sedimentary Research 83, 847872.Google Scholar
Allen, J.P., Fielding, C.R., Gibling, M.R., Ryge, M.C. (2014). Recognizing products of palaeoclimate fluctuation in the fluvial stratigraphic record: An example from the Pennsylvanian to Lower Permian of Cape Breton Island, Nova Scotia. Sedimentology 61, 13321381.Google Scholar
Amorosi, A., Colalongo, M.L. (2005). The linkage between alluvial and coeval nearshore marine succession: evidence from the Late Quaternary record of the Po River Plain, Italy. Blum, M.D., Marriott, S.B., Leclair, S.F. Fluvial Sedimentology VII Special Publication. 35, International Association of Sedimentologists, Tulsa.257275.Google Scholar
Amorosi, A., Caporale, L., Cibin, U., Colalongo, M.L., Pasini, G., Ricci Lucchi, F., Severi, P., Vaiani, S. (1998). The Pleistocene littoral deposits (Imola Sands) of the Northern Apennines foothills. Giornale di Geologia 60, 83118.Google Scholar
Amorosi, A., Pavesi, M., Ricci Lucchi, M., Sarti, G., Piccin, A. (2008). Climatic signature of cyclic fluvial architecture from the Quaternary of the central Po Plain, Italy. Sedimentary Geology 209, 5868.CrossRefGoogle Scholar
Argnani, A., Ricci-Lucchi, F. (2001). Tertiary siliciclastic turbidite systems of the Northern Apennines. Vai, G.B., Martini, I.P. Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins Kluwer Academic Publishers, 327350.Google Scholar
Artoni, A. (2013). The Pliocene-Pleistocene stratigraphic and tectonic evolution of the Central sector of the Western Periadriatic Basin of Italy. Marine and Petroleum Geology 42, 82106.Google Scholar
Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., Lancelot, Y. (1994). The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth and Planetary Science Letters 126, 91108.Google Scholar
Beilinson, E., Veiga, G.D., Spalletti, L.A. (2013). High-resolution sequence stratigraphy and continental environmental evolution: an example from east-central Argentina. Sedimentary Geology 296, 2135.Google Scholar
Bertini, A. (2010). Pliocene to Pleistocene palynoflora and vegetation in Italy: state of the art. Quaternary International 225, 524.CrossRefGoogle Scholar
Bigi, S., Conti, A., Casero, P., Ruggiero, L., Recanati, R., Lipparini, L. (2013). Geological model of the central Periadriatic basin (Apennines, Italy). Marine and Petroleum Geology 42, 107121.Google Scholar
Birkeland, P.W. (1999). Soils and Geomorphology. Oxford University Press, New York.(430 pp.).Google Scholar
Blain, H.A., Cuenca-Bescis, G., Lozano-Fernindez, I., López-García, J.M., Olli, A., Rosell, J., Rodríguez, J. (2012). Investigating the Mid-Brunhes Event in the Spanish terrestrial sequence. Geology 40, 10511054.Google Scholar
Blum, M.D., Tirnqvist, D.E. (2000). Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology 47, 248.Google Scholar
Bracone, V., Amorosi, A., Aucelli, P.P.C., Rosskopf, C.M., Scarciglia, F., Di Donato, V., Esposito, P. (2012). The Pleistocene tectono-sedimentary evolution of the Apenninic foreland basin between Trigno and Fortore rivers (Southern Italy) through a sequence-stratigraphic perspective. Basin Research 24, 213233.Google Scholar
Bridge, J.S., Mackey, S.D. (1993). A revised alluvial stratigraphy model. Marzo, M., Puigdefabregas, C. Alluvial Sedimentation Special Publication. 17, International Association of Sedimentologists, Tulsa.319336.Google Scholar
Bronger, A., Catt, J.A. (1989). Paleosols: problems of definition, recognition, and interpretation. Catena Supplement 16, 17.Google Scholar
Browne, G.H., Naish, T.R. (2003). Facies development and sequence architecture of a late Quaternary fluvial–marine transition, Canterbury Plains and shelf, New Zealand: implications for forced regressive deposits. Sedimentary Geology 158, 5786.Google Scholar
Bullock, P., Fedoroff, N., Kongerius, A., Stoops, G., Tursina, T. (1985). Handbook for Soil Thin Section Description. Waine Research Publication, Wolverhampton.(152 pp.).Google Scholar
Calamita, F., Coltorti, M., Pieruccini, P., Pizzi, A. (1999). Evoluzione strutturale e morfogenesi plio quaternaria dell-Appennino umbro-marchigiano tra il pre-appennino umbro e la costa adriatica. Italian Journal of Geosciences 118, 125139.Google Scholar
Calderoni, G., Della Seta, M., Fredi, P., Lupia Palmieri, E., Nesci, O., Savelli, D., Troiani, F. (2010). Late Quaternary geomorphologic evolution of the Adriatic coast reach encompassing the Metauro, Cesano, and Misa river mouths (northern Marche, Italy). Geoacta Special Publication 3, 109124.Google Scholar
Cantalamessa, G., Di Celma, C. (2004). Sequence response to syndepositional regional uplift: insights from high-resolution sequence stratigraphy of late Early Pleistocene strata, Periadriatic Basin, central Italy. Sedimentary Geology 164, 283309.Google Scholar
Cantalamessa, G., Centamore, E., Colalongo, M.L., Micarelli, A., Nanni, T., Pasini, G., Potetti, M., Ricci Lucchi, F. with the collaboration of Cristallini, C.. Di Lorito, L. (1986). Il Plio-Pleistocene delle Marche. Centamore, E., Deiana, G. La Geologia delle Marche Studi Geologici Camerti, Volume Speciale. 6181.Google Scholar
Cantalamessa, G., Di Celma, C., Potetti, M., Lori, P., Didaskalou, P., Albianelli, A., Napoleone, G. (2009). Climatic control on deposition of upper Pliocene deepwater, gravity-driven strata in the Apennines foredeep (central Italy): correlations to the marine oxygen isotope record. Kneller, B.C., Martinsen, O.J., McCaffrey, W.D. External Controls on Deep-water Depositional Systems Special Publication. 92, SEPM, 247259.Google Scholar
Catt, J.A. (1990). Paleopedology Manual. Quaternary International 6, (6,95. pp.).Google Scholar
Catuneanu, O. (2006). Principles of Sequence Stratigraphy. Elsevier, (375 pp.).Google Scholar
Centamore, E., Nisio, S. (2003). Effects of uplift and tilting in the Central-Northern Apennines (Italy). Quaternary International 101, 102 93101.CrossRefGoogle Scholar
Coltorti, M., Farabollini, P. (2008). Late Pleistocene and Holocene fluvial"coastal evolution of an uplifting area: the Tronto River (Central Eastern Italy). Quaternary International 189, 3955.Google Scholar
Coltorti, M., Pieruccini, P. (2000). The planation surface across the Italian peninsula: a key tool in neotectonics studies. Journal of Geodynamics 29, 323328.Google Scholar
Coltorti, M., Pieruccini, P. (2006). The last interglacial pedocomplexes in the litho and morpho-stratigraphical framework of the central-northern Apennines (Central Italy). Quaternary International 156-157, 118132.Google Scholar
Cremaschi, M. (1987). Paleosols and Vetusols in the Central Po Plain (Northern Italy). Edizioni Unicopli Milano, (306 pp.).Google Scholar
Cremaschi, M., Trombino, L. (1998). The palaeoclimatic significance of paleosols in Southern Fezzan (Libyan Sahara): morphological and micromorphological aspects. Catena 34, 131156.CrossRefGoogle Scholar
Cyr, A.J., Granger, D.E. (2008). Dynamic equilibrium among erosion, river incision, and coastal uplift in the northern and central Apennines, Italy. Geology 36, 103106.Google Scholar
D'Agostino, N., Jackson, J.A., Dramis, F., Funiciello, R. (2001). Interactions between mantle upwelling, drainage evolution and active normal faulting: an example from the central Apennines (Italy). Geophysical Journal International 147, 475497.Google Scholar
De Santis, V., Caldara, M., Torres, T., Ortiz, J.E. (2014). Two middle Pleistocene warm stages in the terrace deposits of the Apulia region (southern Italy). Quaternary International 332, 218.Google Scholar
Di Celma, C. (2011). Sedimentology, architecture, and depositional evolution of a coarse-grained submarine canyon fill from the Gelasian (early Pleistocene) of the Peri-Adriatic basin, Offida, central Italy. Sedimentary Geology 238, 233253.Google Scholar
Di Celma, C., Farabollini, P., Moscatelli, U. (2000). Landscape, settlement and roman cadastres in the lower Sangro valley (Italy). Vermeulen, F., de Dapper, M. Geoarchaeology of the Landscape of Classical Antiquity, International Colloquium Ghent, 23"24 October 1998 Babesch Supplement. 5, 2334.Google Scholar
Di Celma, C., Cantalamessa, G., Didaskalou, P., Lori, P. (2010). Sedimentology, architecture, and sequence stratigraphy of coarse-grained, submarine canyon fills from the Pleistocene (Gelasian-Calabrian) of the Peri-Adriatic basin, central Italy. Marine and Petroleum Geology 27, 13401365.Google Scholar
Di Celma, C., Cantalamessa, G., Didaskalou, P. (2013). Stratigraphic organization and predictability of mixed coarse-grained and fine-grained successions in an upper slope Pleistocene turbidite system of the Peri-Adriatic basin. Sedimentology 60, 763799.Google Scholar
Di Celma, C., Teloni, R., Rustichelli, A. (2014). Large-scale stratigraphic architecture and sequence analysis of an early Pleistocene submarine canyon fill, Monte Ascensione succession (Peri-Adriatic central Italy). International Journal of Earth Sciences (Geologische Rundschau) 103, 843875.Google Scholar
Di Celma, C., Teloni, R., Rustichelli, A. Evolution of the Gelasian (Pleistocene) slope turbidite systems of southern Marche (Peri-Adriatic basin, central Italy). Journal of Maps 10.1080/17445647.2014.995724 (in press).Google Scholar
Doglioni, C. (1991). A proposal of kinematic modeling for W-dipping subductions – possible applications to the Tyrrhenian-Apennines system. Terra Nova 3, 423434.Google Scholar
Duchaufour, P. (1992). Pedology: Pedogenesis and Classification. (transl. by T.R. Patton)Allen and Unwin, London.(448 pp.).Google Scholar
Duchaufour, P. (1995). Pedologie. Sol, Vegetation, Environnement. Masson, Paris.(324 pp.).Google Scholar
Dudal, R., Tavernier, R., Osmond, D.. (1966). Soil Map of Europe"1:2.500.000. Explanatory text & Map. FAO, Rome.Google Scholar
Eppes, M., Bierma, R., Vinson, D., Pazzaglia, F. (2008). A soil chronosequence study of the Reno River Valley, Italy. Geoderma 147, 97107.Google Scholar
FAO (Food and Agriculture Organization of the United Nations), (2006). Guidelines for soil description. 4th ed.FAO, Rome.Google Scholar
Farabollini, P., Aringoli, D., Materazzi, M. (2009). The Neolithic site of Maddalena di Muccia (Umbria-Marche Apennine, Italy): a tip to reconstruct the geomorphological evolution and human occupation during the Late Pleistocene and the Holocene. Journal of Archaeological Science 36, 18001806.Google Scholar
Fedoroff, N. (1997). Clay illuviation in Red Mediterranean soils. Catena 28, 171189.CrossRefGoogle Scholar
Fedoroff, N., Courty, M.A., Zhengtang, G. (2010). Paleosoils and relict soils. Stoops, G., Marcelino, V., Mees, F. Interpretation of Micromorphological Features of Soils and Regoliths Elsevier, 623658.Google Scholar
Foix, N., Paredes, J.M., Giacosa, R.E. (2013). Fluvial architecture variations linked to changes in accommodation space: Rio Chico Formation (Late Paleocene), Golfo San Jorge basin, Argentina. Sedimentary Geology 294, 342355.Google Scholar
Gibling, M.R., Bird, D.J. (1994). Late Carboniferous cyclothems and alluvial paleovalleys in the Sydney Basin, Nova Scotia. Geological Society of America Bulletin 106, 105117.Google Scholar
Gunderson, K.L., Pazzaglia, F.J., Picotti, V., Anastasio, D.J., Kodama, K.P., Rittenour, T., Frankel, K.F., Ponza, A., Berti, C., Negri, A., Sabbatini, A. (2014). Unraveling tectonic and climatic controls on synorogenic stratigraphy. Geological Society of America Bulletin 126, 532552.Google Scholar
Hampson, G.J., Gani, M.R., Sahoo, H., Rittersbacher, A., Irfan, N., Ranson, A., Jewell, T.O., Gani, N.D., Howell, J., Buckley, S., Bracken, B. (2012). Controls on large-scale patterns of fluvial sandbody distribution in alluvial to coastal plain strata: Upper Cretaceous Blackhawk Formation, Wasatch Plateau, Central Utah, USA. Sedimentology 59, 22262258.Google Scholar
Hearty, P.J., Kindler, P., Cheng, H., Edwards, R.L. (1999). A + 20 m middle Pleistocene sea-level highstand (Bermuda and the Bahamas) due to partial collapse of Antarctic ice. Geology 27, 375378.Google Scholar
Hein, F.J., Walker, R.G. (1977). Bar evolution and development of stratification in the gravelly, braided, Kicking Horse River, British Columbia. Canadian Journal of Earth Sciences 14, 562570.Google Scholar
Holbrook, J.M. (2006). Base-level buffers and buttresses: a model for upstream versus downstream control on fluvial geometry and architecture within sequences. Journal of Sedimentary Research 76, 162174.Google Scholar
Holbrook, J.M., Schumm, S.A. (1999). Geomorphic and sedimentary response of rivers to tectonic deformation: a brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings. Tectonophysics 305, 287306.Google Scholar
Hussein, J., Adey, M.A. (1998). Changes in microstructure, voids and b-fabric of surface samples of a Vertisol cused by wet/dry cycles. Geoderma 85, 6382.Google Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., Mcintyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J. (1984). The orbital theory of Pleistocene climate: support from a revised chronology of the marine ?18 record. Berger, A., Imbrie, J., Hays, J.D., Kukla, G., Saltzman, B. Milankovitch and Climate Part 1 Reidel, Dordrecht.269305.Google Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J.M., Chappellaz, J., Fischer, H., Gallet, J.C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J.P., Stenni, B., Stocker, T.F., Tison, J.L., Werner, M., Wolff, E.W. (2007). Orbital and millennial Antarctic climate variability over the last 800 000 years. Science 317, 793796.Google Scholar
Kelly, M., Black, S., Androwan, J.S. (2000). A calcrete-based U/Th chronology for landform evolution in the Sorbas basin, southeast Spain. Quat. Sci. Rev. 19, 9951010.Google Scholar
Kemp, R.A. (1985). Soil micromorphology and the quaternary. Quaternary Research Technology Guide 2, (80 pp).Google Scholar
Kemp, R.A. (1998). The role of micromorphology in paleopedological research. Quaternary International 51, 52 133141.Google Scholar
Khadkikar, A.S. (1999). Trough cross-bedded conglomerate facies. Sedimentary Geology 128, 3949.Google Scholar
Kovda, I., Mermut, A.R. (2010). Vertic features. Stoops, G., Marcelino, V., Mees, F. Interpretation of Micromorphological Features of Soils and Regoliths Elsevier, Amsterdam.109127.Google Scholar
Kraus, M.J. (1984). Sedimentology and tectonic setting of early Tertiary quartzite conglomerates, northwest Wyoming. Koster, E.H., Steel, R.J. Sedimentology of Gravels and Conglomerates Canadian Society of Petroleum Geologists Memoir 10, 203216.Google Scholar
Kraus, M.J. (1999). Paleosols in clastic sedimentary rocks: their geologic applications. Earth-Science Reviews 47, 4170.Google Scholar
Leeder, M.R., Stewart, M.D. (1996). Fluvial incision and sequence stratigraphy: alluvial responses to relative sea-level fall and their detection in the geological record. Hesselbo, S.P., Parkinson, D.N. Sequence stratigraphy in British Geology Special Publication. 103, Geological Society, London.2539.Google Scholar
Lindbo, D.L., Stolt, M.H., Vepraskas, M.J. (2010). Redoximorphic features. Stoops, G., Marcelino, V., Mees, F. Interpretation of Micromorphological features of Soils and Regoliths Elsevier, Amsterdam.129147.Google Scholar
Lisiecki, L.E., Raymo, M.E. (2005). A Pliocene"Pleistocene stack of 57 globally distributed benthic ?18O records. Paleoceanography 20, 10.1029/2004PA001071.Google Scholar
Malinverno, A., Ryan, W.B.F. (1986). Extension in the Tyrrenian sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5, 227245.Google Scholar
Martinsen, O.J., Ryseth, A., Helland-Hansen, W., Flesche, H., Torkildsen, G., Idil, S. (1999). Stratigraphic base level and fluvial architecture: Ericson Sandstone (Campanian), Rock Springs Uplift, SW Wyoming, USA. Sedimentology 46, 235263.Google Scholar
Massari, F. (1983). Tabular cross-bedding in Messinian fluvial channel conglomerates, Southern Alps, Italy. Collinson, J.D., Lewin, J. Modern and Ancient Fluvial Systems Blackwell Publishing Ltd., Oxford, UK.287300.Google Scholar
Mazza, P., Bertini, A. (2013). Were Pleistocene hippopotamuses exposed to climate-driven body size changes?. Boreas 42, 194209.Google Scholar
McCarthy, P.J., Plint, A.G. (1998). Recognition of interfluve sequence boundaries: integrating paleopedology and sequence stratigraphy. Geology 26, 387390.Google Scholar
McCarthy, P.J., Faccini, U.F., Plint, A.G. (1999). Evolution of an ancient coastal plain: palaeosols, interfluves and alluvial architecture in a sequence stratigraphic framework, Cenomanian Dunvegan Formation, NE British Columbia, Canada. Sedimentology 46, 861891.Google Scholar
McPherson, J.G., Shanmugan, G., Moiola, R.J. (1987). Fan-deltas and braid deltas: varieties of coarse-grained deltas. Geological Society of America Bulletin 99, 331340.Google Scholar
Miall, A.D. (1996). The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer-Verlag Inc., Heidelberg.(582 pp.).Google Scholar
Muttoni, G., Scardia, G., Kent, D.V., Morsiani, E., Tremolada, F., Cremaschi, M., Peretto, C. (2011). First dated human occupation of Italy at ~ 0.85 Ma during the late Early Pleistocene climate transition. Earth and Planetary Science Letters 307, 241252.CrossRefGoogle Scholar
Nettleton, W.D., Olson, C.G., Wysocki, D.A. (2000). Palaeosol classification: problems and solutions. Catena 41, 6192.Google Scholar
Olsen, T., Steel, R.J., Higseth, K., Skar, T., Roe, S.-L. (1995). Sequential architecture in a fluvial succession: sequence stratigraphy in the Upper Cretaceous Mesaverde Group, Price Canyon, Utah. Journal of Sedimentary Research 65, 265280.Google Scholar
Olson, S.L., Hearty, P.L. (2009). A sustained + 21 m sea-level highstand during MIS 11 (400 ka): direct fossil and sedimentary evidence from Bermuda. Quaternary Science Reviews 28, 271285.Google Scholar
Ori, G.G., Serafini, G., Visentin, C., Ricci Lucchi, F., Casnedi, R., Colalongo, M.L., Mosna, S. (1991). The Pliocene"Pleistocene Adriatic Foredeep (Marche and Abruzzo, Italy): an integrated approach to surface and subsurface geology. Agip-EAPG, 3rd EAPG Conference. Adriatic Foredeep Field Trip, Florence May 26"3085.Google Scholar
Plint, A.G., McCarthy, P.J.M., Faccini, U.F. (2001). Nonmarine sequence stratigraphy: updip expression of sequence boundaries and systems tracts in a high-resolution framework, Cenomanian Dunvegan Formation, Alberta foreland basin, Canada. American Association of Petroleum Geologists Bulletin 85, 19672001.Google Scholar
Posamentier, H.W. (2001). Lowstand alluvial bypass systems: incised vs. unincised. American Association of Petroleum Geologists Bulletin 85, 17711793.Google Scholar
Püspöki, Z., Demeter, G., Tóth-Makk, V., Kozák, M., Dávid, "., Virág, M., Kovács-Pálffy, P., Kónya, P., Gyuricza, Gy, Kiss, J., McIntosh, R.W., Forg"cs, Z., Buday, T., Kovócs, Z., Gombos, T., Kummer, I. (2013). Tectonically controlled Quaternary intracontinental fluvial sequence development in the Nyírség-Pannonian Basin, Hungary. Sedimentary Geology 283, 3456.Google Scholar
Raymo, M.E., Mitrovica, J.X. (2012). Collapse of polar ice sheets during the stage 11 interglacial. Nature 483, 453456.Google Scholar
Retallack, G.J. (2000). Depth to pedogenic carbonate horizon as a paleoprecipitation indicator: comment. Geology 28, 572573.Google Scholar
Rogers, R.R. (1998). Sequence analysis of the Upper Cretaceous Two Medicine and Judith River Formations, Montana: nonmarine response to Claggett and Bearpaw marine cycles. Journal of Sedimentary Research 68, 615631.Google Scholar
Rohling, E.J., Braun, K., Grant, K., Kucera, M., Roberts, A.P., Siddall, M., Trommer, G. (2010). Comparison between Holocene and Marine Isotope Stage-11 sea-level histories. Earth and Planetary Science Letters 291, 97105.Google Scholar
Royer, D.L. (1999). Depth to pedogenic carbonate horizons as a paleoprecipitation indicator. Geology 27, 11231126.Google Scholar
Rust, B.R. (1978). Depositional models for braided alluvium. Miall, A.D. Fluvial Sedimentology Memoir. 5, Canadian Society of Petroleum Geologists, 605625.Google Scholar
Rust, B.R. (1984). Proximal braidplain deposits in the Middle Devonian Malbaie Formation of Eastern Gaspi, Quebec, Canada. Sedimentology 31, 615695.Google Scholar
Scarciglia, F., Terribile, F., Colombo, C., Cinque, A. (2003). Late Quaternary climatic changes in Northern Cilento (Southern Italy): an integrated geomorphological and paleopedological study. Quaternary International 106/107, 141158.Google Scholar
Scarciglia, F., Pulice, I., Robustelli, G., Vecchio, G. (2006). Soil chronosequences on Quaternary marine terraces along the northwestern coast of Calabria (Southern Italy). Quaternary International 156, 157 133155.Google Scholar
Schumm, S.A. (1993). River responses to base level change: implications for sequence stratigraphy. Journal of Geology 101, 279294.Google Scholar
Shanley, K.W., McCabe, P.J. (1994). Perspectives on the sequence stratigraphy of continental strata. American Association of Petroleum Geologists Bulletin 78, 544568.Google Scholar
Siddall, M., Chappell, J., Potter, E.-K. (2007). Eustatic sea level during past interglacials. Sirocko, F., Claussen, M., Sonchez Goli, M.F., Litt, T. Developments in Quaternary Sciences 7, 7592.CrossRefGoogle Scholar
Siegenthaler, C., Huggenberger, P. (1993). Pleistocene Rhine gravel: deposits of a braided river system with dominant pool preservation. Best, J.L., Bristow, C.S. Braided Rivers Geological Society. 75, 147162.(Special Publication).Google Scholar
Smith, N.D. (1974). Sedimentology and bar formation in the upper Kicking Horse River, a braided outwash stream. Journal of Geology 82, 205224.Google Scholar
Sinderholm, M., Tirsgaard, H. (1998). Proterozoic fluvial styles: response to changes in accommodation space (Rivieradal sandstones, eastern North Greenland). Sedimentary Geology 120, 257274.Google Scholar
Steel, R.J., Thompson, D.B. (1983). Structures and textures in Triassic braided stream conglomerates (“Bunter” Pebble Beds) in the Sherwood Sandstone Group, North Staffordshire, England. Sedimentology 30, 341369.Google Scholar
Stoops, G. (2003). Guidelines for Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America, Madison WI.(184 pp.).Google Scholar
Takano, O., Waseda, A. (2003). Sequence stratigraphic architecture of a differentially subsiding bay to fluvial basin: the Eocene Ishikari Group, Ishikari Coal Field, Hokkaido, Japan. Sedimentary Geology 160, 131158.Google Scholar
Van Vliet-Lanoe, B. (2010). Frost action. Stoops, G., Marcelino, V., Mees, F. Interpretation of Micromorphological Features of Soils and Regoliths Elsevier, Amsterdam.81108.Google Scholar
Varela, A.N. Tectonic control of accommodation space and sediment supply within the Mata Amarilla Formation (lower Upper Cretaceous) Patagonia, Argentina. Sedimentology 10.1111/sed.12164(in press).Google Scholar
Wegmann, K.W., Pazzaglia, F.J. (2009). Late Quaternary fluvial terraces of the Romagna and Marche Apennines, Italy: climatic, lithologic, and tectonic controls on terrace genesis in an active orogen. Quaternary Science Reviews 28, 137165.Google Scholar
Woolfe, K.J., Larcombe, P., Naish, T.R., Purdon, R.G. (1998). Lowstand rivers need not incise the shelf: an example from the Great Barrier Reef, Australia, with implications for sequence stratigraphic models. Geology 26, 7578.Google Scholar
WRB (World Reference Base for Soil Resources), (2006). World Soil Resources Reports 103. FAO (Food and Agriculture Organization of the United Nations), Rome.Google Scholar
Wright, V.P. (2007). Calcrete. Nash, D.J., McLaren, S.J. Geochemical Sediments and Landscapes Blackwell Publishing, Oxford.465.Google Scholar
Wright, V.P., Marriott, S.B. (1993). The sequence stratigraphy of fluvial depositional systems: the role of floodplain sediment storage. Sedimentary Geology 86, 203210.Google Scholar
Yaalon, D.H. (1997). Soils in the Mediterranean region: what makes them different?. Catena 28, 157169.CrossRefGoogle Scholar
Yagishita, K. (1997). Paleocurrent and fabric analyses of fluvial conglomerates of the Paleogene Noda Group, northeast Japan. Sedimentary Geology 109, 5371.Google Scholar
Zembo, I., Trombino, L., Bersezio, R., Felletti, F., Da Piaggi, M. (2012). Climatic and tectonic controls on pedogenesis and landscape evolution in a quaternary intramontane basin (Val d'Agri basin, southern Apennines, Italy). Journal of Sedimentary Research 82, 283309.Google Scholar