Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T10:02:55.843Z Has data issue: false hasContentIssue false

Macrofossil and Tree-Ring Evidence for a Long-Term Forest Succession and Mid-Holocene Hemlock Decline

Published online by Cambridge University Press:  20 January 2017

Louise Filion
Affiliation:
Centre d'études nordiques, Université Laval, Québec, Canada G1K 7P4
François Quinty
Affiliation:
Centre d'études nordiques, Université Laval, Québec, Canada G1K 7P4

Abstract

Paludified dune fields in southern Québec provided a unique opportunity to analyze a mid-Holocene forest succession, ranging from xero-mesophilous forests to treed peatlands, which registered the hemlock decline, a major biostratigraphic event in eastern North America. Our fossil-tree chronology established from 66 radiocarbon dates of tree stems indicates that white pine and hemlock were present at the study site about 6000-5700 yr B.P. Hemlock reached a maximum 4900-4800 yr B.P. and then declined between 4600 and 3800 yr B.P.; the species recovered around 3700 yr B.P. and then decreased when white pine and eastern latch dominated the site after 3000 yr B.P. and between 2600 and 2200 yr B.P., respectively. Tree-ring signatures of fossil hemlocks suggest the continuous influence of biotic factors, possibly insect defoliators, throughout the record, as shown by recurrent suppressed-growth pattern. Microscopic examination of the hemlock fossil stems disclosed no evidence of fungal disease. The hemlock decline was probably caused by regional posthypsithermal climatic changes, toward moister conditions.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, T. D. Moeller, R. E., and Davis, M. B. (1986). Pollen in laminated sediments provides evidence for a mid-Holocene forest pathogen outbreak. Ecology 67, 11011105.CrossRefGoogle Scholar
Anderson, T. W. (1974). The chestnut pollen decline as a time horizon in lake sediments in eastern North America. Canadian Journal of Earth Sciences 11, 678685.CrossRefGoogle Scholar
Baker, R. G. Maher, L. J. Chumbley, C. A., and Van Zant, K. L. (1992). Patterns of Holocene Environmental Change in the Midwest-ern United States. Quaternary Research 37, 379389.CrossRefGoogle Scholar
Bernabo, J. C, and Webb, T. III, (1977). Changing patterns in the Holocene pollen record from northeastern North America: A mapped summary. Quaternary Research 8, 6496.CrossRefGoogle Scholar
Besré, F., and Occhietti, S. (1990). Les varves de Deschaillons, les rythmites du Saint-Maurice et les rythmites de Leclercville, Pléis-tocène supérieur, vallée du Saint-Laurent, Quebec. Geographic physique et Quaternaire 42, 181198.Google Scholar
Birks, H. J. B. (1986). Late-Quaternary biotic changes in terrestrial and lacustrine environments, with particular reference to north-west Europe. In “Handbook of Holocene Palaoecology and Palaeohydrol-ogy” (Berglund, B. E., Ed.), pp. 365. Wiley, New York.Google Scholar
Commission canadienne de pédologie (1978). “Le système canadien de classification des sols.” Direction de la recherche, Ministère de l’Agriculture du Canada, Publication 1646.Google Scholar
Davis, M. B. (1981). Outbreaks of forest pathogens in Quaternary history. In “Proceedings, Fourth International Palynological Conference,” Vol. 3, pp. 216227. Luchnow.Google Scholar
Davis, M. B. (1983). Holocene vegetational history of the Eastern United States. In “Late Quaternary Environments of the United States: The Holocene” (Wright, H. E. Jr., Ed.), Vol. 2, pp. 166181. Univ. of Minnesota Press, Minneapolis.Google Scholar
Faegri, K., and Iversen, K. (1975). “Textbook of Pollen Analysis.” Munksgaard, Copenhagen.Google Scholar
Filion, L. (1984). A relationship between dunes, fire and climate recorded in the Holocene deposits of Québec. Nature 309, 543546.CrossRefGoogle Scholar
Filion, L. (1987). Holocene development of parabolic dunes in the Central St. Lawrence Lowland, Québec. Quaternary Research 28, 196209.CrossRefGoogle Scholar
Filion, L. Saint-Laurent, D. Desponts, M., and Payette, S. (1991). The late Holocene record of aeolian and fire activity in northern Québec, Canada. The Holocene 1, 201208.CrossRefGoogle Scholar
Fowells, H. A. (1965). “Silvics of Forest Trees of the United States.” U.S.D.A. Agricultural Handbook 271.Google Scholar
Freund, J. E. (1967). “Modem Elementary Statistics.” Prentice-Hall, Englewoods Cliffs, NJ. Google Scholar
Fritts, H. C. (1976). “Tree Rings and Climate.” Academic Press, New York.Google Scholar
Gaudreau, D. C, and Webb, T. III, (1985). Late-Quaternary pollen stratigraphy and isochrones maps for the Northeastern United States. In “Pollen Records of Late-Quaternary North American sediments” (Bryant, V. M. and Holloway, R. G., Eds.), pp. 245280. American Association of Stratigraphic Palynologists Foundation, Dallas.Google Scholar
Jardon, Y. (1992). “Historique des épidémies de la tenthrède du mélèze et effets sur la croissance du mélèze, lac Bienville, Québec.” Unpublished M.A. dissertation, Université Laval, Québec.Google Scholar
Labelle, C, and Richard, P. J. H. (1981). Végétation tardiglaciaire et postglaciaire au sud-est du parc des Laurentides, Québec. Géographic physique et Quaternaire 35, 345359.CrossRefGoogle Scholar
Lamothe, M. (1989). A new framework of the Pleistocene stratigraphy of the St. Lawrence Lowland, southern Québec. Géographie physique et Quaternaire 43, 119129.CrossRefGoogle Scholar
Leuchner, H. H. Delorme, A., and Höfle, H. C. (1987). Dendrochro-nological study of oak trunks found in bogs of northwest Germany. In “Proceedings, International Symposium on Ecological Aspects of Tree-Ring Analysis,” pp. 298318. New York.Google Scholar
Martineau, R. (1985). “Insectes nuisibles des forêts de 1’Est du Canada.” Marcel Broquet Inc., LaPrairie, Québec.Google Scholar
McKeague, J. A. (1977). “Manuel d’échantillonnage et d’analyse des sols.” Sous-comité des méthodes d’analyse, Commission canadienne de pédologie, Ottawa.Google Scholar
Occhietti, S. (1990). Lithostratigraphie du Quaternaire de la vallée du Saint-Laurent: Méthode, cadre conceptuel et séquences sédimen-tables. Geographic physique et Quaternaire 44, 137145.CrossRefGoogle Scholar
Occhietti, S., and Hillaire-Marcel, C. (1977). Chronologie 14C des événements paléogéographiques du Québec depuis 14 000 ans. Géographie physique et Quaternaire 31, 123133.CrossRefGoogle Scholar
Parent, M., and Occhietti, S. (1988). Late Wisconsinan ice retreat and Champlain Sea invasion in the St. Lawrence Valley, Québec. Géographie physique et Quaternaire 42, 215246.CrossRefGoogle Scholar
Richard, P. J. H. (1973). Histoire postglaciaire comparée de la végétation dans deux localités au sud de la ville de Québec. Naturaliste canadien 100, 591603.Google Scholar
Richard, P. J. H. Larouche, A. C, and Lortie, G. (1992). Paléophyto-géographie et paléoclimats postglaciaires dans l’ouest du Bas-Saint-Laurent, Québec. Géographic physique et Quaternaire 46, 151172.CrossRefGoogle Scholar
Ritchie, J. C. (1987). “Postglacial Vegetation of Canada.” Cambridge Univ. Press, New York.Google Scholar
Rousseau, C. (1974). “Géographie floristique du Québec-Labrador.” Les Presses de l’Université Laval, Québec.Google Scholar
Saint-Julien, P., and Hubert, C. (1975). Evolution of the Taconian Oro-gen in the Quebec Appalachian. American Journal of Sciences 275(A) 337362.Google Scholar
Webb, T. III (1982). Temporal resolution in Holocene pollen data. In “Proceedings, Third North American Paleontological Convention,” Vol. 2, pp. 569572. Montreal.Google Scholar
Winkler, M. G. Swain, A. M., and Kutzbach, J. E. (1986). Middle Holocene Dry Period in the Northern Midwestern United States: Lake Levels and Pollen Stratigraphy. Quaternary Research 25, 235250.CrossRefGoogle Scholar