Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T06:14:14.812Z Has data issue: false hasContentIssue false

Life histories and niche dynamics in late Quaternary proboscideans from midwestern North America

Published online by Cambridge University Press:  23 October 2020

Chris Widga*
Affiliation:
Don Sundquist Center of Excellence in Paleontology, East Tennessee State University, 1212 Suncrest Dr., Gray, TN, 37615 Research and Collections Center, Illinois State Museum, 1011 E. Ash St., Springfield, IL, 62703
Greg Hodgins
Affiliation:
Department of Physics, University of Arizona, 1118 E. Fourth St., Tucson, AZ, 85721
Kayla Kolis
Affiliation:
Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd., Lawrence, KS, 66045
Stacey Lengyel
Affiliation:
Don Sundquist Center of Excellence in Paleontology, East Tennessee State University, 1212 Suncrest Dr., Gray, TN, 37615 Research and Collections Center, Illinois State Museum, 1011 E. Ash St., Springfield, IL, 62703
Jeff Saunders
Affiliation:
Research and Collections Center, Illinois State Museum, 1011 E. Ash St., Springfield, IL, 62703 The Desert Laboratory on Tumamoc Hill, University of Arizona, 1675 W. Anklam Rd., Tucson, AZ, 85745
J. Douglas Walker
Affiliation:
Department of Geology, University of Kansas, 1414 Naismuth Dr., Lawrence, KS, 66045
Alan D. Wanamaker
Affiliation:
Department of Geological and Atmospheric Sciences, Iowa State University, 253 Science, Ames, IA, 50011
*
*Corresponding author at: 1212 Suncrest Dr., Gray, TN37615. E-mail address: [email protected] (C. Widga)

Abstract

Stable isotopes of mammoths and mastodons have the potential to illuminate ecological changes in late Pleistocene landscapes and megafaunal populations as these species approached extinction. The ecological factors at play in this extinction remain unresolved, but isotopes of bone collagen (δ13C, δ15N) and tooth enamel (δ13C, δ18O, 87Sr/86Sr) from midwestern North America are leveraged to examine ecological and behavioral changes that occurred during the last interglacial-glacial cycle. Both species had significant C3 contributions to their diets and experienced increasing levels of niche overlap as they approached extinction. A subset of mastodons after the last glacial maximum exhibit low δ15N values that may represent expansion into a novel ecological niche, perhaps densely occupied by other herbivores. Stable isotopes from serial and microsampled enamel show increasing seasonality and decreasing temperatures as mammoths transitioned from Marine Isotope Stage (MIS) 5e to glacial conditions (MIS 4, MIS 3, MIS 2). Isotopic variability in enamel suggests mobility patterns and life histories have potentially large impacts on the interpretation of their stable isotope ecology. This study further refines the ecology of midwestern mammoths and mastodons demonstrating increasing seasonality and niche overlap as they responded to landscape changes in the final millennia before extinction.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alroy, J., 2001. A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292, 18931896.CrossRefGoogle ScholarPubMed
Arppe, L., Karhu, J.A., Vartanyan, S., Drucker, D.G., Etu-Sihvola, H., Bocherens, H., 2019. Thriving or surviving? The isotopic record of the Wrangel Island woolly mammoth population. Quaternary Science Reviews 222, 105884.CrossRefGoogle Scholar
Augustine, D.J., McNaughton, S.J., Frank, D.A., 2003. Feedbacks between soil nutrients and large herbivores in a managed savanna ecosystem. Ecological Applications 13, 13251337.CrossRefGoogle Scholar
Austin, A.T., Vitousek, P.M., 1998. Nutrient dynamics on a precipitation gradient in Hawai'i. Oecologia 113, 519529.CrossRefGoogle ScholarPubMed
Bataille, C.P., Bowen, G.J., 2012. Mapping 87Sr/86Sr variations in bedrock and water for large scale provenance studies. Chemical Geology 304–305, 3952.CrossRefGoogle Scholar
Baumann, E.J., Crowley, B.E., 2015. Stable isotopes reveal ecological differences amongst now-extinct proboscideans from the Cincinnati region, USA. Boreas 44, 240254.CrossRefGoogle Scholar
Birks, H.H., van Geel, B., Fisher, D.C., Grimm, E.C., Kuijper, W.J., van Arkel, J., van Reenen, G.B.A., 2019. Evidence for the diet and habitat of two late Pleistocene mastodons from the Midwest, USA. Quaternary Research 91, 792812.CrossRefGoogle Scholar
Bocherens, H., Pacaud, G., Lazarev, P.A., Mariotti, A., 1996. Stable isotope abundances (13C, 15N) in collagen and soft tissues from Pleistocene mammals from Yakutia: implications for the palaeobiology of the mammoth steppe. Palaeogeography, Palaeoclimatology, Palaeoecology 126, 3144.CrossRefGoogle Scholar
Brock, F., Higham, T., Ditchfield, P., Bronk Ramsey, C., 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (Orau). Radiocarbon 52, 103112.CrossRefGoogle Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Broughton, J.M., Weitzel, E.M., 2018. Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nature Communications 9, 5441.CrossRefGoogle ScholarPubMed
Bryant, D.J., Froelich, P.N., 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta 59, 45234537.CrossRefGoogle Scholar
Cerling, T.E., Wittemyer, G., Ehleringer, J.R., Remien, C.H., Douglas-Hamilton, I., 2009. History of animals using isotope records (HAIR): a 6-year dietary history of one family of African elephants. Proceedings of the National Academy of Sciences 106, 80938100.CrossRefGoogle ScholarPubMed
Chafota, J., Owen-Smith, N., 2009. Episodic severe damage to canopy trees by elephants: interactions with fire, frost and rain. Journal of Tropical Ecology 25, 341345.CrossRefGoogle Scholar
Coe, M., 1978. The decomposition of elephant carcasses in the Tsavo (East) National Park, Kenya. Journal of Arid Environments 1, 7186.CrossRefGoogle Scholar
Coltrain, J.B., Harris, J.M., Cerling, T.E., Ehleringer, J.R., Dearing, M.D., Ward, J., Allen, J. 2004. Rancho La Brea stable isotope biogeochemistry and its implications for the palaeoecology of late Pleistocene, coastal southern California. Palaeogeography, Palaeoclimatology, Palaeoecology 205, 199219.CrossRefGoogle Scholar
Daux, V., Lécuyer, C., Héran, M.A., Amiot, R., Simon, L., Fourel, F., Martineau, F., et al. , 2008. Oxygen isotope fractionation between human phosphate and water revisited. Journal of Human Evolution 55, 11381147.CrossRefGoogle ScholarPubMed
Davis, M., Pineda-Munoz, S., 2016. The temporal scale of diet and dietary proxies. Ecology and Evolution 6, 18831897.CrossRefGoogle ScholarPubMed
Delcourt, H.R., Delcourt, P., 1991. Quaternary Ecology: A Paleoecological Perspective. Chapman & Hall, New York.CrossRefGoogle Scholar
Denny, M.W., Helmuth, B., Leonard, G.H., Harley, C.D.G., Hunt, L.J.H., Nelson, E.K., 2004. Quantifying scale in ecology: lessons from a wave-swept shore. Ecological Monographs 74, 513532.CrossRefGoogle Scholar
Dirks, W., Bromage, T.G., Agenbroad, L.D., 2012. The duration and rate of molar plate formation in Palaeoloxodon cypriotes and Mammuthus columbi from dental histology. Quaternary International 255, 7985.CrossRefGoogle Scholar
Drucker, D.G., Bridault, A., Iacumin, P., Bocherens, H., 2009. Bone stable isotopic signatures (15N, 18O) as tracers of temperature variation during the late glacial and early Holocene: case study on red deer Cervus elaphus from Rochedane (Jura, France). Geological Journal 44, 593604.CrossRefGoogle Scholar
Drucker, D.G., Stevens, R.E., Germonpré, M., Sablin, M.V., Péan, S., Bocherens, H., 2018. Collagen stable isotopes provide insights into the end of the mammoth steppe in the central east European Plains during the Epigravettian. Quaternary Research 90, 457469.CrossRefGoogle Scholar
El Adli, J.J., Cherney, M.D., Fisher, D.C., Harris, J.M., Farrell, A., Cox, S., 2015. Last years of life and season of death of a Columbian mammoth from Rancho La Brea. Science Series, Natural History Museum of Los Angeles County 42, 6580.Google Scholar
El Adli, J.J., Fisher, D.C., Vartanyan, S.L., Tikhonov, A.N., 2017. Final years of life and seasons of death of woolly mammoths from Wrangel Island and mainland Chukotka, Russian Federation. Quaternary International 445, 135–45.CrossRefGoogle Scholar
Esker, D., Forman, S.L., Widga, C., Walker, J.D., Andrew, J.E., 2019. Home range of the Columbian mammoths (Mammuthus columbi) and grazing herbivores from the Waco Mammoth National Monument (Texas, USA) based on strontium isotope ratios from tooth enamel bioapatite. Palaeogeography, Palaeoclimatology, Palaeoecology 534, 109291.CrossRefGoogle Scholar
Feranec, R.S., Hadly, E.A., Paytan, A., 2009. Stable isotopes reveal seasonal competition for resources between late Pleistocene bison (Bison) and horse (Equus) from Rancho La Brea, southern California. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 153160.CrossRefGoogle Scholar
Fiedel, S., Feranec, R., Marino, T., Driver, D., 2019. A new AMS radiocarbon date for the Ivory Pond mastodon. Eastern Paleontologist 3, 115.Google Scholar
Fisher, D.C., 2018. Paleobiology of Pleistocene proboscideans. Annual Review of Earth and Planetary Sciences 46, 229260.CrossRefGoogle Scholar
Fisher, D.C., 2009. Paleobiology and extinction of proboscideans in the Great Lakes region of North America. In: Haynes, G. (Ed.), American Megafaunal Extinctions at the End of the Pleistocene. Springer, Dordrecht, Netherlands, pp. 5575.CrossRefGoogle Scholar
Fisher, D.C., Fox, D.L., 2006. Five years in the life of an Aucilla River mastodon. In Webb, S.D. (Ed.), First Floridians and Last Mastodons: The Page-Ladson Site in the Aucilla River. Springer Dordrecht, Netherlands, pp. 343377.CrossRefGoogle Scholar
Fisher, D.C., Tikhonov, A.N., Kosintsev, P.A., Rountrey, A.N., Buigues, B., van der Plicht, J., 2012. Anatomy, death, and preservation of a woolly mammoth (Mammuthus primigenius) calf, Yamal Peninsula, northwest Siberia. Quaternary International 255, 94105.CrossRefGoogle Scholar
Fortelius, M., Solounias, N., 2000. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates 225, 136.2.0.CO;2>CrossRefGoogle Scholar
Fox-Dobbs, K., Bump, J.K., Peterson, R.O., Fox, D.L., Koch, P.L., 2007. Carnivore-specific stable isotope variables and variation in the foraging ecology of modern and ancient wolf populations: case studies from Isle Royale, Minnesota, and La Brea. Canadian Journal of Zoology 85, 458471.CrossRefGoogle Scholar
Fox-Dobbs, K., Leonard, J.A., Koch, P.L., 2008. Pleistocene megafauna from eastern Beringia: paleoecological and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon records. Palaeogeography, Palaeoclimatology, Palaeoecology 261, 3046.CrossRefGoogle Scholar
Fox, D.L., Fisher, D.C., 2001. Stable isotope ecology of a late Miocene population of Gomphotherium productus (Mammalia, Proboscidea) from Port of Entry Pit, Oklahoma, USA. PALAIOS 16, 279293.2.0.CO;2>CrossRefGoogle Scholar
Frank, D.A., David Evans, R., Tracy, B.F., 2004. The role of ammonia volatilization in controlling the natural 15N abundance of a grazed grassland. Biogeochemistry 68, 169178.CrossRefGoogle Scholar
Fujiyoshi, L., Sugimoto, A., Tsukuura, A., Kitayama, A., Lopez Caceres, M.L., Mijidsuren, B., Saraadanbazar, A., et al. , 2017. Spatial variations in larch needle and soil δ 15 N at a forest–grassland boundary in northern Mongolia. Isotopes in Environmental and Health Studies 53, 5469.CrossRefGoogle Scholar
Gill, J.L., Williams, J.W., Jackson, S.T., Lininger, K.B., Robinson, G.S., 2009. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 11001103.CrossRefGoogle ScholarPubMed
Gonzales, L.M., Grimm, E.C., 2009. Synchronization of late-glacial vegetation changes at Crystal Lake, Illinois, USA with the North Atlantic Event stratigraphy. Quaternary Research 72, 234245.CrossRefGoogle Scholar
Green, J.L., DeSantis, L.R.G., Smith, G.J., 2017. Regional variation in the browsing diet of Pleistocene Mammut americanum (Mammalia, Proboscidea) as recorded by dental microwear textures. Palaeogeography, Palaeoclimatology, Palaeoecology 487, 5970.CrossRefGoogle Scholar
Guldemond, R., Van Aarde, R., 2008. A meta-analysis of the impact of African elephants on savanna vegetation. The Journal of Wildlife Management 72, 892899.CrossRefGoogle Scholar
Handley, L.L., Raven, J.A., 1992. The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant, Cell and Environment 15, 965985.CrossRefGoogle Scholar
Haynes, C.V., 1985. Mastodon-bearing springs and late Quaternary geochronology of the Lower Pomme de Terre Valley, Missouri (Vol. 204). Geological Society of America.CrossRefGoogle Scholar
Hedges, R.E.M., Clement, J.G., David, C.,. Thomas, L., O'Connell, T.C., 2007. Collagen turnover in the adult femoral mid-shaft: modeled from anthropogenic radiocarbon tracer measurements. American Journal of Physical Anthropology 133, 808816.CrossRefGoogle ScholarPubMed
Hedman, K.M., Brandon Curry, B., Johnson, T.M., Fullagar, P.D., Emerson, T.E., 2009. Variation in strontium isotope ratios of archaeological fauna in the midwestern United States: a preliminary study. Journal of Archaeological Science 36, 6473.CrossRefGoogle Scholar
Hedman, K.M., Slater, P.A., Fort, M.A., Emerson, T.E., Lambert, J.M., 2018. Expanding the strontium isoscape for the American midcontinent: identifying potential places of origin for Cahokian and pre-Columbian migrants. Journal of Archaeological Science: Reports 22, 202213.CrossRefGoogle Scholar
Higgins, P., MacFadden, B.J., 2004. “Amount effect” recorded in oxygen isotopes of late glacial horse (Equus) and bison (Bison) teeth from the Sonoran and Chihuahuan deserts, southwestern United States. Palaeogeography, Palaeoclimatology, Palaeoecology 206, 337353.CrossRefGoogle Scholar
Higham, T F G, Jacobi, R.M., Bronk Ramsey, C., 2006. AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48, 179195.CrossRefGoogle Scholar
Hobbie, E.A., Macko, S.A., Williams, M., 2000. Correlations between foliar Δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122, 273283.CrossRefGoogle ScholarPubMed
Hoppe, K.A., 2004. Late Pleistocene mammoth herd structure, migration patterns, and Clovis hunting strategies inferred from isotopic analyses of multiple death assemblages. Paleobiology 30, 129145.2.0.CO;2>CrossRefGoogle Scholar
Hoppe, K.A., Koch, P.L., 2007. Reconstructing the migration patterns of late Pleistocene mammals from northern Florida, USA. Quaternary Research 68, 347352.CrossRefGoogle Scholar
Hoppe, K.A., Koch, P.L., Carlson, R.W., Webb, S.D., 1999. Tracking mammoths and mastodons: reconstruction of migratory behavior using strontium isotope ratios. Geology 27, 439442.2.3.CO;2>CrossRefGoogle Scholar
Iacumin, P., Di Matteo, A., Nikolaev, V., Kuznetsova, T.V., 2010. Climate information from C, N and O stable isotope analyses of mammoth bones from northern Siberia. Quaternary International 212, 206212.CrossRefGoogle Scholar
Keenan, S.W., Widga, C., Debruyn, J., Schaeffer, S., 2018. Nutrient hotspots through time: a field guide to modern and fossil taphonomy in east Tennessee. In: Engel, A.S., Hatcher, R.D., Geology at Every Scale: Field Excursions for the 2018 GSA Southeastern Section Meeting in Knoxville, Tennessee. Geological Society of America, Boulder, CO, pp. 6174.Google Scholar
King, J.E., 1973. Late Pleistocene palynology and biogeography of the western Missouri Ozarks. Ecological Monographs 43, 539565.CrossRefGoogle Scholar
Knapp, A.K., Blair, J.M., Briggs, J.M., Collins, S.L., Hartnett, D.C., Johnson, L.C., Towne, E.G., et al. , 1999. The keystone role of bison in American tallgrass prairie: bison increase habitat heterogeneity and alter a broad plant, community, and ecosystem processes. BioScience 49, 3950.CrossRefGoogle Scholar
Koch, P.L., Hoppe, K.A., Webb, S.D., 1998. The isotopic ecology of late Pleistocene mammals in North America: part 1. Florida. Chemical Geology 152, 119138.CrossRefGoogle Scholar
Koch, P.L., Tuross, N., Fogel, M.L., 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24, 417429.CrossRefGoogle Scholar
Lepper, B.T., Frolking, T.A., Fisher, D.C., Goldstein, G., Sanger, J.E., Wymer, D.A., Ogden, J.G., et al. , 1991. Intestinal contents of a late Pleistocene mastodon from midcontinental North America. Quaternary Research 36, 120125.CrossRefGoogle Scholar
McNaughton, S.J., Ruess, R.W., Seagle, S.W., 1988. Large mammals and process dynamics in African ecosystems. BioScience 38, 794800.CrossRefGoogle Scholar
Metcalfe, J.Z., Longstaffe, F.J., 2012. Mammoth tooth enamel growth rates inferred from stable isotope analysis and histology. Quaternary Research 77, 424432.CrossRefGoogle Scholar
Metcalfe, J.Z., Longstaffe, F.J., 2014. Environmental change and seasonal behavior of mastodons in the Great Lakes region inferred from stable isotope analysis. Quaternary Research 82, 366377.CrossRefGoogle Scholar
Metcalfe, J.Z., Longstaffe, F.J., Ballenger, J.A.M., Haynes, C.V., 2011. Isotopic paleoecology of Clovis mammoths from Arizona. Proceedings of the National Academy of Sciences 108, 1791617920.CrossRefGoogle ScholarPubMed
Metcalfe, J.Z., Longstaffe, F.J., Hodgins, G., 2013. Proboscideans and paleoenvironments of the Pleistocene Great Lakes: landscape, vegetation, and stable isotopes. Quaternary Science Reviews 76, 102113.CrossRefGoogle Scholar
Michelsen, A., Quarmby, C., Sleep, D., Jonasson, S., 1998. Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115, 406418.CrossRefGoogle ScholarPubMed
Mosimann, J.E., Martin, P.S., 1975. Simulating overkill by Paleoindians: did Man hunt the giant mammals of the New World to extinction? Mathematical models show that the hypothesis is feasible. American Scientist 63, 304313.Google Scholar
Newsom, L.A., Mihlbachler, M.C., 2006. Mastodons (Mammut americanum) diet foraging patterns based on analysis of dung deposits. In Webb, S.D., (Ed.), First Floridians and Last Mastodons: The Page-Ladson Site in the Aucilla River. Springer, Dordrecht, Netherlands, pp. 263331.CrossRefGoogle Scholar
Ngene, S., Okello, M.M., Mukeka, J., Muya, S., Njumbi, S., Isiche, J., 2017. Home range sizes and space use of African elephants (Loxodonta africana) in the southern Kenya and northern Tanzania borderland landscape. International Journal of Biodiversity and Conservation 9, 926.Google Scholar
Nogués-Bravo, D., Rodríguez, J., Hortal, J., Batra, P., Araújo, M.B., 2008. Climate change, humans, and the extinction of the woolly mammoth. PLOS Biology 6, e79.CrossRefGoogle ScholarPubMed
Owen-Smith, R.N., 1992. Megaherbivores: The Influence of Very Large Body Size on Ecology. Cambridge University Press, Cambridge, UK.Google Scholar
Pacher, M., Stuart, A.J., 2009. Extinction chronology and palaeobiology of the cave bear (Ursus spelaeus). Boreas 38, 189206.CrossRefGoogle Scholar
Pérez-Crespo, V.A., Schaaf, P., Solís-Pichardo, G., Arroyo-Cabrales, J., Alva-Valdivia, L.M., Torres-Hernández, J.R., 2016. Strontium isotopes and mobility of a Columbian mammoth (Mammuthus columbi) population, Laguna de las Cruces, San Luis Potosí, México. Geological Magazine 153, 743749.CrossRefGoogle Scholar
Plumptre, A.J., 1994. The effects of trampling damage by herbivores on the vegetation of the Pare National des Volcans, Rwanda. African Journal of Ecology 32, 115129.CrossRefGoogle Scholar
Rabanus-Wallace, M.T., Wooller, M.J., Zazula, G.D., Shute, E., Jahren, A.H., Kosintsev, P., Burns, J.A., et al. , 2017. Megafaunal isotopes reveal role of increase moisture on rangeland during late Pleistocene extinctions. Nature Ecology & Evolution 1, 0125.CrossRefGoogle ScholarPubMed
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., et al. , 2014. A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.CrossRefGoogle Scholar
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., et al. ., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55 (4), 1869-1887.CrossRefGoogle Scholar
Rhodes, A.N., Urbance, J.W., Youga, H., Corlew-Newman, H., Reddy, C.A., Klug, M.J., Tiedje, J.M., et al. , 1998. Identification of bacterial isolates obtained from intestinal contents associated with 12,000-year-old mastodon remains. Applied and Environmental Microbiology. 64, 651658.CrossRefGoogle ScholarPubMed
Richards, M.P., Hedges, R.E.M., 2003. Variations in bone collagen δ13C and δ15N values of fauna from northwest Europe over the last 40,000 years. Palaeogeography, Palaeoclimatology, and Palaeoecology 193, 261267.CrossRefGoogle Scholar
Ripple, W.J., Van Valkenburgh, B., 2010. Linking top-down forces to the Pleistocene megafaunal extinctions. BioScience 60, 516526.CrossRefGoogle Scholar
Rountrey, A.N., Fisher, D.C., Tikhonov, A.N., Kosintsev, P.A., Lazarev, P.A., Boeskorov, G., Buigues, B., 2012. Early tooth development, gestation, and season of birth in mammoths. Quaternary International 255, 196205.CrossRefGoogle Scholar
Saunders, J.J., Grimm, E.C., Widga, C.C., Dennis Campbell, G., Curry, B.B., Grimley, D.A., Hanson, P.R., et al. , 2010. Paradigms and proboscideans in the southern Great Lakes region, USA. Quaternary International 217, 175187.CrossRefGoogle Scholar
Schubert, B.A., Jahren, A.H., 2015. Global increase in plant carbon isotope fractionation following the last glacial maximum caused by increase in atmospheric pCO2. Geology 43, 435438.CrossRefGoogle Scholar
Schulze, E.-D., Chapin, F.S., Gebauer, G., 1994. Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecologia 100, 406412.CrossRefGoogle ScholarPubMed
Schwartz-Narbonne, R., Longstaffe, F.J., Kardynal, K.J., Druckenmiller, P., Hobson, K.A., Jass, C.N., Metcalfe, J.Z., et al. , 2019. Reframing the mammoth steppe: insights from analysis of isotopic niches. Quaternary Science Reviews 215, 121.CrossRefGoogle Scholar
Shearer, G, Kohl, D., 1993. Natural abundance of 15N: fractional contribution of two sources to a common sink and use of isotope discrimination. In: Knowles, R., Blackburn, T.H. (Eds.), Nitrogen Isotope Techniques. Academic Press, San Diego, CA, pp. 89125.CrossRefGoogle Scholar
Slater, P.A., Hedman, K.M., Emerson, T.E., 2014. Immigrants at the Mississippian polity of Cahokia: strontium isotope evidence for population movement. Journal of Archaeological Science 44, 117127.CrossRefGoogle Scholar
Smith, G.J., DeSantis, L.R.G., 2018. Dietary ecology of Pleistocene mammoths and mastodons as inferred from dental microwear textures. Palaeogeography, Palaeoclimatology, Palaeoecology 492, 1025.CrossRefGoogle Scholar
Stevens, R., Jacobi, R., Street, M., Germonpre, M., Conard, N., Munzel, S., Hedges, R.E.M., 2008. Nitrogen isotope analyses of reindeer (Rangifer tarandus), 45,000 BP to 9,000 BP: palaeoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 262, 3245.CrossRefGoogle Scholar
Stuart, A.J., 2015. Late Quaternary megafaunal extinctions on the continents: a short review. Geological Journal 50, 338363.CrossRefGoogle Scholar
Stuart, A.J., Kosintsev, P.A., Higham, T.F.G., Lister, A.M., 2004. Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth. Nature 431, 684.CrossRefGoogle ScholarPubMed
Stuart, A.J., Lister, A.M., 2011. Extinction chronology of the cave lion Panthera spelaea. Quaternary Science Reviews, 30, 23292340.CrossRefGoogle Scholar
Stuart, A.J., Lister, A.M., 2012. Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis in the context of late Quaternary megafaunal extinctions in northern Eurasia. Quaternary Science Reviews 51, 117.CrossRefGoogle Scholar
Surovell, T.A., Pelton, S.R., Anderson-Sprecher, R., Myers, A.D., 2016. Test of Martin's overkill hypothesis using radiocarbon dates on extinct megafauna. Proceedings of the National Academy of Sciences 113, 886891.CrossRefGoogle ScholarPubMed
Surovell, T., Waguespack, N., Brantingham, P.J., 2005. Global archaeological evidence for proboscidean overkill. Proceedings of the National Academy of Sciences 102, 62316236.CrossRefGoogle ScholarPubMed
Szpak, P., Gröcke, D.R., Debruyne, R., MacPhee, R.D.E., Guthrie, R.D., Froese, D., Zazula, G.D., et al. , 2010. Regional differences in bone collagen δ13C and δ15N of Pleistocene mammoths: implications for paleoecology of the mammoth steppe. Palaeogeography, Palaeoclimatology, Palaeoecology 286, 8896.CrossRefGoogle Scholar
Teale, C.L., Miller, N.G., 2012. Mastodon herbivory in mid-latitude late-Pleistocene boreal forests of eastern North America. Quaternary Research 78, 7281.CrossRefGoogle Scholar
Tuross, N., Fogel, M.L., Hare, P.E., 1988. Variability in the preservation of the isotopic composition of collagen from fossil bone. Geochimica et Cosmochimica Acta 52, 929935.CrossRefGoogle Scholar
Uno, K.T., Quade, J., Fisher, D.C., Wittemyer, G., Douglas-Hamilton, I., Andanje, S., Omondi, P., et al. , 2013. Bomb-curve radiocarbon measurement of recent biologic tissues and applications to wildlife forensics and stable isotope (paleo)ecology. Proceedings of the National Academy of Sciences 110, 1173611741.CrossRefGoogle Scholar
Valeix, M., Fritz, H., Sabatier, R., Murindagomo, F., Cumming, D., Duncan, P., 2011. Elephant-induced structural changes in the vegetation and habitat selection by large herbivores in an African savanna. Biological Conservation 144, 902912.CrossRefGoogle Scholar
van Geel, B., Fisher, D.C., Rountrey, A.N., van Arkel, J., Duivenvoorden, J.F., Nieman, A.M., van Reenen, G.B.A., et al. , 2011. Palaeo-environmental and dietary analysis of intestinal contents of a mammoth calf (Yamal Peninsula, northwest Siberia). Quaternary Science Reviews 30, 39353946.CrossRefGoogle Scholar
Warinner, C., Tuross, N., 2010. Brief communication: tissue isotopic enrichment associated with growth depression in a pig: implications for archaeology and ecology. American Journal of Physical Anthropology 141, 486493.Google Scholar
Widga, C., Lengyel, S.N., Saunders, J., Hodgins, G., Walker, J.D., Wanamaker, A.D., 2017a. Late Pleistocene proboscidean population dynamics in the North American midcontinent. Boreas 46, 772782.CrossRefGoogle Scholar
Widga, C., Walker, J.D., Boehm, A., 2017b. Variability in bioavailable 87Sr/86Sr in the North American midcontinent. Open Quaternary 3, 4.CrossRefGoogle Scholar
Widga, C., Walker, J.D., Stockli, L.D., 2010. Middle Holocene bison diet and mobility in the eastern Great Plains (USA) based on δ13C, δ18O, and 87Sr/86Sr analyses of tooth enamel carbonate. Quaternary Research 73, 449463.CrossRefGoogle Scholar
Wolverton, S., Lyman, R.L., Kennedy, J.H., La Point, T.W., 2009. The terminal Pleistocene extinctions in North America, hypermorphic evolution, and the dynamic equilibrium model. Journal of Ethobiology 29, 2863.CrossRefGoogle Scholar
Yansa, C.H. and Adams, K.M., 2012. Mastodons and mammoths in the Great Lakes region, USA and Canada: New insights into their diets as they neared extinction. Geography Compass 6, 175188.CrossRefGoogle Scholar
Zazzo, A., Balasse, M., Patterson, W.P., 2006. The reconstruction of mammal individual history: refining high-resolution isotope record in bovine tooth dentine. Journal of Archaeological Science 33, 11771187.CrossRefGoogle Scholar
Supplementary material: File

Widga et al. supplementary material

Widga et al. supplementary material 1

Download Widga et al. supplementary material(File)
File 179.2 KB
Supplementary material: File

Widga et al. supplementary material

Widga et al. supplementary material 2

Download Widga et al. supplementary material(File)
File 48.1 KB
Supplementary material: File

Widga et al. supplementary material

Widga et al. supplementary material 3

Download Widga et al. supplementary material(File)
File 52.5 KB
Supplementary material: File

Widga et al. supplementary material

Widga et al. supplementary material 4

Download Widga et al. supplementary material(File)
File 36.9 KB