Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-19T05:46:06.790Z Has data issue: false hasContentIssue false

Late-glacial to Holocene transition in northern Spain deduced from land-snail shelly accumulations

Published online by Cambridge University Press:  25 July 2012

Yurena Yanes*
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA
Igor Gutiérrez-Zugasti
Affiliation:
Department of Archaeology, BioArch, University of York, Biology S-Block, Wentworth Way, York YO10 5DD, England, UK
Antonio Delgado
Affiliation:
Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Avenida de las Palmeras 4, 18100, Armilla, Granada, Spain
*
Corresponding author. Fax: + 1 34 958 552 620. Email Address:[email protected]

Abstract

Shells of the helicid Cepaea nemoralis were studied using taphonomic, isotopic and morphometric measurements to estimate late glacial–Holocene (~ 12.1–6.3 cal ka BP) environmental conditions in northern Spain. Higher taphonomic alteration among Holocene shells suggests lower sedimentation rates or higher shell-destruction rates than during glacial conditions. Shells preserved the aragonitic composition despite differing degree of skeleton damage. Shell δ13C values were − 10.3 ± 1.1‰, − 8.2 ± 2.3‰, and − 7.3 ± 1.6‰ for modern, Holocene and late-glacial individuals, respectively. Higher δ13C values during the late-glacial and some Holocene periods imply higher water stress of C3 plants and/or higher limestone contribution than today. Intrashell δ13C values were higher during juvenile stages suggesting higher limestone ingestion to promote shell growth. Shell δ18O values were − 1.1 ± 0.7‰, − 0.9 ± 0.8‰ and − 0.1 ± 0.7‰ for modern, Holocene and late-glacial specimens, respectively. A snail flux-balance model suggests that during ~ 12.1 − 10.9 cal ka BP conditions were drier and became wetter at ~ 8.4 − 6.3 cal ka BP and today. Intrashell δ18O profiles reveal that glacial individuals experienced more extreme seasonality than interglacial shells, despite possible larger hibernation periods. Shell size correlated positively with δ18O values, suggesting that growth rates and ultimate adult size of C. nemoralis may respond to climate fluctuation in northern Spain.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balakrishnan, M., and Yapp, C.J. Flux balance model for the oxygen and carbon isotope compositions of land snail shells. Geochimica et Cosmochimica Acta 68, (2004). 20072024.Google Scholar
Balakrishnan, M., Yapp, C.J., Meltzer, D.J., and Theler, J.L. Paleoenvironment of the Folsom archaeological site, New Mexico, USA, approximately 10,500 14C yr B.P. as inferred from the stable isotope composition of fossil land snail shells. Quaternary Research 63, (2005). 3144.Google Scholar
Balakrishnan, M., Yapp, C.J., Theler, J.L., Carter, B.J., and Wyckoff, D.G. Environmental significance of 13C/12C and 18O/16O ratios of modern land-snail shells from the southern Great Plains of North America. Quaternary Research 63, (2005). 1530.Google Scholar
Baldini, L.M., Walker, S.E., Bruce, R., Baldini, J.U.L., and Crowe, D.E. Isotope ecology of the modern land snails Cerion, San Salvador, Bahamas: preliminary advances toward establishing a low-latitude island palaeoenvironmental proxy. Palaios 22, (2007). 174187.CrossRefGoogle Scholar
Bard, E. Abrupt climate changes over millennial time scales: climate shock. Physics Today 55, (2002). 3238.CrossRefGoogle Scholar
Beaulieu, J.L., Andrieu, V., Ponell, P., Reille, M., and Lowe, J.J. The Weichselian late-glacial in southwestern Europe (Iberian Peninsula, Pyrenees, Massif Central, northern Apennines). Journal of Quaternary Science 9, (1994). 101107.CrossRefGoogle Scholar
Bengtson, S.A., Nilsson, A., Nordstrom, S., and Rundgren, S. Selection for adult shell size in natural populations of the land snail Cepaea hortensis (Mull.). Ann. Zool. Fenn. 16, (1979). 187194.Google Scholar
Bobrowsky, P.T. The history and science of gastropods in archaeology. American Antiquity 49, (1984). 7793.Google Scholar
Bohígas, R., and Muñoz, E. Excavaciones arqueológicas de urgencia en el Covacho de Arenillas (Islares, Castro-Urdiales). Ontañón, R. Actuaciones Arqueológicas en Cantabria 1987–1999. Arqueología de Gestión. (2002). Gobierno de Cantabria, Santander. 4547.Google Scholar
Bonadonna, F.P., and Leone, G. Palaeoclimatological reconstruction using stable isotope data on continental molluscs from Valle di Castiglione, Roma, Italy. The Holocene 5, (1995). 461469.CrossRefGoogle Scholar
Bordon, A., Peyron, O., Lézine, A.-M., Brewer, S., and Fouache, E. Pollen-inferred Late-Glacial and Holocene climate in southern Balkans (Lake Maliq). Quaternary International 200, (2009). 1930.Google Scholar
Brett, C.E., and Baird, G.C. Comparative taphonomy: a key to paleoenvironmental interpretation based on fossil preservation. Palaios 1, (1986). 207227.Google Scholar
Cameron, R.A.D., Pkryszko, B.M., and Horsak, M. Land snail faunas in Polish forests: patterns of richness and composition in a post-glacial landscape. Malacologia 5, (2010). 77134.Google Scholar
Carter, S.P. The stratification and taphonomy of shells in calcareous soils: implications for land snail analysis in archaeology. Journal of Archaeological Science 17, (1990). 495507.Google Scholar
Cole, D.R., and Monger, H.C. Influence of atmospheric CO2 on the decline of C4 plants during the last deglaciation. Nature 368, (1994). 533536.Google Scholar
Colonese, A.C., Zanchetta, G., Fallick, A.E., Martini, F., Manganelli, G., and Lo Vetro, D. Stable isotope composition of late glacial land snail shells from Grotta del Romito (Southern Italy): paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 254, (2007). 550560.Google Scholar
Colonese, A.C., Zanchetta, G., Fallick, A.E., Martini, F., Manganelli, G., and Russell, D. Stable isotope composition of Helix ligata (Müller, 1774) from Late Pleistocene–Holocene archaeological record from Grotta della Serratura (Southern Italy): paleoclimatic implications. Global and Planetary Change 71, (2010). 249257.Google Scholar
Colonese, A.C., Zanchetta, G., Dotsika, E., Drysdale, R.N., Fallick, A.E., Grifoni-Cremonesi, R., and Manganelli, G. Early–middle Holocene land snail shell stable isotope record from Grotta di Latronico 3 (southern Italy). Journal of Quaternary Science 25, (2010). 13471359.CrossRefGoogle Scholar
Colonese, A.C., Zanchetta, G., Russell, D., Fallick, A., Manganelli, G., Lo Vetro, D., Martini, F., and di Giuseppe, Z. Stable isotope composition of Late Pleistocene–Holocene Eobania vermiculata shells (Müller, 1774) (Pulmonata, Stylommatophora) from the Central Mediterranean basin: data from Grotta d'Oriente (Favignana, Sicily). Quaternary International 244, (2011). 7687.Google Scholar
Cowie, R.H. The life cycle and productivity of the land snail Theba pisana (Mollusca: Helicidae). Journal of Animal Ecology 53, (1984). 311325.Google Scholar
Dansgaard, W., White, J.W.C., and Johnsen, S.J. The abrupt termination of the Younger Dryas climate event. Nature 339, (1989). 532533.Google Scholar
Dansgaard, W., Johnsen, S.J., Clauson, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjornsdottir, A.E., Jouzel, J., and Bond, G. Evidence for general instability in past climate from a 250 kyr ice-core record. Nature 364, (1993). 218220.Google Scholar
Dawson, T.E., Mambelli, S., Plamboeck, A.H., Templer, PlH, and Tu, K.P. Stable isotopes in plant ecology. Ann. Rev. Ecol. Syst. 33, (2002). 507559.Google Scholar
Dormoy, I., Peyron, O., Nebout, N.C., Goring, S., Kotthoff, U., Magny, M., and Pross, J. Terrestrial climate variability and seasonality changes in the Mediterranean region between 15000 and 4000 years BP deduced from marine pollen records. Clim. Past 5, (2009). 615632.CrossRefGoogle Scholar
Evans, J.G. Land snails in archaeology with special reference to the British Isles. (1972). Seminar Press, London.Google Scholar
Eynaud, F., de Abreu, L., Voelker, A., Schönfeld, J., Salgueiro, E., Turon, L.J., Penaud, A., Toucanne, S., Naughton, F., Sanchez-Goñi, M.F., Malaizé, B., and Cacho, I. Position of the polar front along the western Iberian margin during key cold episodes of the last 45 ka. Geochemistry, Geophysics, Geosystems 10, (2009). Q07U05 http://dx.doi.org/10.1029/2009GC002398 CrossRefGoogle Scholar
Farquhar, G.D., Ehleringer, J.R., and Hubick, K.T. Carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40, (1989). 503537.CrossRefGoogle Scholar
Ferguson, J.E., Henderson, G.M., Fa, D.A., Finlayson, J.C., and Charnley, N.R. Increased seasonality in the Western Mediterranean during the last glacial from limpet shell geochemistry. Earth and Planetary Science Letters 308, (2011). 325333.Google Scholar
Fischer, H., Wahlen, M., Smith, J., Mastroianni, D., and Deck, B. Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283, (1999). 17121714.Google Scholar
García-Guinea, M.A. Las Cuevas de El Piélago. Sautuola IV, (1985). 11154.Google Scholar
González-Morales, M.R. La Prehistoria de las Marismas: Excavaciones en la Cueva de La Fragua (Santoña). Campañas de 1990, 1991, 1993, 1994 y 1996. Ontañón, R. Actuaciones arqueológicas en Cantabria, 1984–1999. (2000). Gobierno de Cantabria, Santander. 177179.Google Scholar
Goodfriend, G.A. Variation in land snail shell form and size and its causes: a review. Systematic Zoology 35, (1986). 204223.CrossRefGoogle Scholar
Goodfriend, G.A. Radiocarbon age anomalies in shell carbonate of land snails from semi-arid areas. Radiocarbon 29, (1987). 159167.Google Scholar
Goodfriend, G.A. The use of land snails in paleoenvironmental studies. Quaternary Science Reviews 11, (1992). 665685.Google Scholar
Goodfriend, G.A. Terrestrial stable isotope records of Late Quaternary paleoclimates in the eastern Mediterranean region. Quaternary Science Reviews 18, (1999). 501513.Google Scholar
Goodfriend, G.A., and Ellis, G.L. Stable carbon isotope record of middle to late Holocene climate changes from land snail shells at Hinds Cave, Texas. Quaternary International 67, (2000). 4760.Google Scholar
Goodfriend, G.A., and Ellis, G.L. Stable carbon and oxygen isotope variations in modern Rabdotus land snail shells in the southern Great Plains, USA, and their relation to environment. Geochimica et Cosmochimica Acta 66, (2002). 19872002.CrossRefGoogle Scholar
Goodfriend, G.A., and Hood, D.G. Carbon isotope analysis of land snail shells: implications for carbon sources and radiocarbon dating. Radiocarbon 25, (1983). 810830.Google Scholar
Goodfriend, G.A., Magaritz, M., and Gat, J.R. Stable isotope composition of land snail body water and its relation to environmental waters and shell carbonate. Geochimica et Cosmochimica Acta 53, (1989). 32153221.CrossRefGoogle Scholar
Goodfriend, G.A., Ellis, G.L., and Toolin, L.J. Radiocarbon age anomalies in land snail shells from texas: ontogenetic, individual and geographic patterns of variation. Radiocarbon 41, (1999). 149156.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S.J., and Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, (1993). 552554.Google Scholar
Gutiérrez-Zugasti, I. Early Holocene land snail exploitation in northern Spain: the case of La Fragua cave. Environmental Archaeology 16, (2011). 3648.Google Scholar
Hammer, Ø., Harper, D.A.T., and Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 1 (2001). 9 pp., 178 kb; http://palaeo-electronica.org/2001_1/past/issue1_01.htm.Google Scholar
Hausdorf, B. Is the interspecific variation of body size of land snails correlated with rainfall in Israel and Palestine?. Acta Oecol. 30, (2006). 374379.Google Scholar
Huntley, J.W., Yanes, Y., Kowalewski, M., Castillo, C., Delgado-Huertas, A., Ibáñez, M., Alonso, M.R., Ortiz, J.E., and Torres, T. Testing limiting similarity in Quaternary terrestrial gastropods. Paleobiology 34, (2008). 378388.Google Scholar
Huybers, P.J., and Langmuir, C. Feedback between deglaciation, volcanism, and atmospheric CO2 . Earth and Planetary Science Letters 286, (2009). 479491.Google Scholar
Iglesias, J., Santos, M., and Castillejo, J. Annual activity of cycles of the land snail Helix aspersa Müller in natural populations in north-western Spain. J. Molluscan Stud. 62, (1996). 495505.CrossRefGoogle Scholar
Jablonski, D. Body-size evolution in Cretaceous molluscs and the status of Cope's rule. Nature 385, (1997). 250252.Google Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Gundestrup, N.S., Hammer, C.U., Andersen, U., Andersen, K.K., Hvidberg, C.S., Dahl-Jensen, D., Steffensen, J.P., Shoji, H., Sveinbjörnsdóttir, A.E., White, J.W.C., Jouzel, J., and Fisher, D. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. Journal of Geophysical Research 102, (1997). 26,39726,410.Google Scholar
Kehrwald, N.M., McCoy, W.D., Thibeault, J., Burns, S.J., and Oches, E.A. Paleoclimatic implications of the spatial patterns of modern and LGM European land-snail shell δ18O. Quaternary Research 74, (2010). 166176.Google Scholar
Kerney, M.P., and Cameron, R.A.D. A field guide to the land snails of Britain and North-West Europe. (1979). Collins, London.Google Scholar
Lécolle, P. The oxygen isotope composition of land snail shells as a climatic indicator: applications to hydrogeology and paleoclimatology. Chemical Geology 58, (1985). 157181.Google Scholar
Lubell, D. Are land snails a signature for the Mesolithic–Neolithic transition?. Doc. Praehist. 31, (2004). 124.Google Scholar
Lubell, D. Prehistoric edible land-snails in the circum-Mediterranean: the archaeological evidence. Brugal, J.P., and Desse, J. Petits animaux et sociétés humaines. Du complément alimentaire aux ressources utilitaires. Éditions APDCA, Antibes. (2004). 7798.Google Scholar
McConnaughey, T.A., and Gillikin, D.P. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters 28, (2008). 287299.Google Scholar
G.R.I.P. Members Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364, (1993). 203207.Google Scholar
Mensink, P.J., and Henry, H.A.L. Rain events influence short-term feeding preferences in the snail Cepaea nemoralis . J. Molluscan Stud. 77, (2011). 241247.Google Scholar
Metref, S., Rousseau, D.D., Bentaleb, I., Labonne, M., and Vianey-Liaud, M. Study of the diet effect on δ13C of shell carbonate of the land snail Helix aspersa in experimental conditions. Earth and Planetary Science Letters 211, (2003). 381393.Google Scholar
Moreno, A., López-Merino, L., Leira, M., Marco-Barba, J., González-Samperiz, P., Valero-Garces, B.L., Lopez-Saez, J.A., Santos, L., Mata, P., and Ito, E. Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula). Journal of Paleolimnology 46, (2011). 327349.Google Scholar
Nevo, E., Bar-El, C., and Bar, Z. Genetic diversity, climatic selection and speciation of Sphincterochila land snails in Israel. Biological Journal of the Linnean Society 19, (1983). 339373.Google Scholar
Olson, S.L., and Hearty, P.J. Predation as the primary selective force in recurrent evolution of gigantism in Poecilozonites land snails in Quaternary Bermuda. Biology Letters 6, (2010). 807810.Google Scholar
Pfenninger, M. Comparative analysis of range sizes in Helicidae s.l. (Pulmonata, Gastropoda). Evolutionary Ecology Research 6, (2004). 118.Google Scholar
Pigati, J.S., Quade, J., Shanahan, T.M., Haynes, C.V. Jr. Radiocarbon dating of minute gastropods and new constraints on the timing of spring-discharge deposits in southern Arizona, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 204, (2004). 3345.Google Scholar
Pigati, J.S., Rech, J.A., and Nekola, J.C. Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5, (2010). 519532.Google Scholar
Rasmussen, S.O., Vinther, B.M., Clausen, H.B., and Andersen, K.K. Early Holocene climate oscillations recorded in three Greenland ice cores. Quaternary Science Reviews 26, (2007). 19071914.CrossRefGoogle Scholar
Rasmussen, T.L., Thomsen, E., Nielsen, T., and Wastegard, S. Atlantic surface water inflow to the Nordic seas during the Pleistocene–Holocene transition (mid-late Younger Dryas and Pre-Boreal periods, 12,450–10,000 a BP). Journal of Quaternary Science 26, (2011). 723733.CrossRefGoogle Scholar
Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R. Isotopic patterns in modern global precipitation. Swart, P.K., Lohman, K.C., McKenzie, J., and Savin, S. Climate Change in Continental Isotopic Records, Geophysical Monograph, vol. 78. (1993). American Geophysical Union, Washington. 136.Google Scholar
Ruiz-Cobo, J., and Smith, P. The archaeology of the Matienzo depression, North Spain. British Archaeological Reports International Series 975. (2001). Archaeopress, Oxford.Google Scholar
Rundell, R.J., and Cowie, R.H. Preservation on species diversity and abundances in Pacific Island land snail death assemblages. Journal of Conchology 38, (2003). 155169.Google Scholar
Schilthuizen, M., Chai, H.N., and Kimsin, T.E. Abundance and diversity of land snails (Mollusca: Gastropoda) on limestone hills in Borneo. The Raffles Bulletin of Zoology 51, (2003). 3542.Google Scholar
Stott, L.D. The influence of diet on the δ13C of shell carbon in the pulmonate snail Helix aspersa . Earth and Planetary Science Letters 195, (2002). 249259.Google Scholar
Verbruggen, F., Heiri, O., Reichart, G.J., and Lotter, A.F. Chironomid δ18O as a proxy for past lake water δ18O: a Lateglacial record from Rotsee (Switzerland). Quaternary Science Reviews 29, (2010). 22712279.Google Scholar
Welter-Schultes, F.W. Spatial variations in Albinaria terebra land snail morphology in Crete (Pulmonata: Clausiliidae): constraints for older and younger colonizations?. Paleobiology 27, (2001). 348368.2.0.CO;2>CrossRefGoogle Scholar
Wolda, H. Variation in growth rate in the land snail Cepaea nemoralis . Researches on Population Ecology 12, (1970). 185204.Google Scholar
Yanes, Y. Shell taphonomy and fidelity of live, dead, Holocene and Pleistocene land snail assemblages. Palaios 27, (2012). 127136.Google Scholar
Yanes, Y., and Tyler, C.L. Drilling predation intensity and feeding preferences by Nucella (Muricidae) on limpets inferred from a dead-shell assemblage. Palaios 24, (2009). 280289.Google Scholar
Yanes, Y., Tomašových, A., Kowalewski, M., Castillo, C., Aguirre, J., Alonso, M.R., and Ibáñez, M. Taphonomy and compositional fidelity of Quaternary fossil assemblages of terrestrial gastropods from carbonate-rich environments of the Canary Islands. Lethaia 41, (2008). 235256.Google Scholar
Yanes, Y., Delgado, A., Castillo, C., Alonso, M.R., Ibáñez, M., De la Nuez, J., and Kowalewski, M. Stable isotope (δ18O, δ13C, and δD) signatures of recent terrestrial communities from a low-latitude, oceanic setting: endemic land snails, plants, rain, and carbonate sediments from the eastern Canary Islands. Chemical Geology 249, (2008). 377392.Google Scholar
Yanes, Y., Romanek, C.S., Delgado, A., Brant, H.A., Noakes, J.E., Alonso, M.R., and Ibáñez, M. Oxygen and carbon stable isotopes of modern land snail shells as environmental indicators from a low-latitude oceanic island. Geochimica et Cosmochimica Acta 73, (2009). 40774099.Google Scholar
Yanes, Y., Aguirre, J., Alonso, M.R., Ibáñez, M., and Delgado, A. Ecological fidelity of Pleistocene–Holocene land snail shell assemblages preserved in carbonate-rich paleosols. Palaios 26, (2011). 406419.Google Scholar
Yanes, Y., Romanek, C.S., Molina, F., Cámara, J.A., and Delgado, A. Holocene Paleoenvironment (7,200–4,000 cal. years BP) of the Los Castillejos Archaeological site (Southern Spain) as inferred from stable isotopes of land snail shells. Quaternary International 244, (2011). 6775.Google Scholar
Yanes, Y., Yapp, C.J., Ibáñez, M., Alonso, M.R., De la Nuez, J., Quesada, M.L., Castillo, C., and Delgado, A. Pleistocene–Holocene environmental change in the Canary Archipelago as inferred from stable isotopes of land snail shells. Quaternary Research 65, (2011). 658669.CrossRefGoogle Scholar
Yanes, Y., Riquelme, J.A., Cámara, J.A., and Delgado, A. Stable isotope composition of middle to late Holocene land snail shells from the Marroquíes archeological site (Jaén, Southern Spain): Paleoenvironmental implications. Quat. Int. (2012). http://dx.doi.org/10.1016/j.quaint.2012.06.037 Google Scholar
Yapp, C.J. Oxygen and carbon isotope measurements of land snail shell carbonates. Geochimica et Cosmochimica Acta 43, (1979). 629635.Google Scholar
Yates, T.J.S., Spiro, B.F., and Vita-Finzi, C. Stable isotope variability and the selection of terrestrial mollusc shell samples for 14C dating. Quaternary International 87, (2002). 87100.Google Scholar
Zaarur, S., Olack, G., and Affek, H.P. Paleo-environmental implication of clumped isotopes in land snail shells. Geochimica et Cosmochimica Acta 75, (2011). 68596869.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, (2001). 686693.Google Scholar
Zanchetta, G., Bonadonna, F.P., and Leone, G. A 37-meter record of paleoclimatological events from stable isotope data on continental mollusks in Valle di Castiglione, near Romen, Italy. Quaternary Research 52, (1999). 293299.Google Scholar
Zanchetta, G., Leone, G., Fallick, A.E., and Bonadonna, F.P. Oxygen isotope composition of living land snail shells: data from Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 223, (2005). 2033.Google Scholar
Supplementary material: PDF

Yanes et al. Supplementary Material

Supplementary Material

Download Yanes et al. Supplementary Material(PDF)
PDF 244.2 KB