Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-15T01:30:11.737Z Has data issue: false hasContentIssue false

Late-Glacial Cooling in Amazonia Inferred from Pollen at Lagoa do Caçó, Northern Brazil

Published online by Cambridge University Press:  20 January 2017

Marie-Pierre Ledru
Affiliation:
CNPq/IRD (ex ORSTOM), Universidade de São Paulo, Instituto de Geociências, Departamento Geologia Sedimentar e Ambiental, Caixa Postal 11348, São Paulo, SP 05422-970, Brazil, E-mail: [email protected]
Renato Campello Cordeiro
Affiliation:
CNPq/IRD (ex ORSTOM), Universidade Federal Fluminense, Departamento Da Geoquı́mica, Morro de Valonguinho Outeiro, São João Batista, Niteroi, RJ 24020-007, Brazil
José Maria Landim Dominguez
Affiliation:
CNPq/IRD (ex ORSTOM), Universidade Federal da Bahia, Laboratório de Estudos Costeiros, CPGG, IGEO, Rua Caetano Moura 123, Salvador, BA 40210-340, Brazil
Louis Martin
Affiliation:
CNPq/IRD (ex ORSTOM), Universidade Federal da Bahia, Laboratório de Estudos Costeiros, CPGG, IGEO, Rua Caetano Moura 123, Salvador, BA 40210-340, Brazil
Philippe Mourguiart
Affiliation:
Institut de Recherche pour le Développement (ex ORSTOM), Université de Pau et des Pays de l'Adour, Departamento d'Ecologie, Campus Universitaire d'Anglet, Parc Montaury, 64600 Anglet, France
Abdelfetah Sifeddine
Affiliation:
CNPq/IRD (ex ORSTOM), Universidade Federal Fluminense, Departamento Da Geoquı́mica, Morro de Valonguinho Outeiro, São João Batista, Niteroi, RJ 24020-007, Brazil
Bruno Turcq
Affiliation:
Institut de Recherche pour le Développement IRD (ex ORSTOM), 32 Avenue Henri Varagnat, 93143 Bondy Cedex, France

Abstract

New pollen data from a core at Lagoa do Caçó, Maranhão state, Brazil (2°58′S 43°25′W; 120 m elevation), show higher frequencies of Podocarpus at the end of the Pleistocene than today. The increase in Podocarpus, which follows the successive increase of various pioneer species such as Didymopanax, Melastomataceae/Combretaceae, and Cecropia, implies a progressive late-glacial increase of moist and cool climatic conditions. A comparable increase in Podocarpus is found in other lowland records in Amazonia. A review of published pollen data from Amazonia suggests that the moisture source was from the southeast. By contrast, present-day moisture comes from the tropical Atlantic and from the Amazon basin, with its convective precipitation. The likely cause for the southeastern moisture source between ca. 15,000 and 14,500 cal yr B.P. was enhanced polar (Antarctic) advection that reached low latitudes and maintained year-round the meteorological equator in its austral-winter position at northern latitudes or reduced drastically its southward summer displacement. This hypothesis is consistent with marine and ice core records.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Absy, M.L., Cleef, A., Fournier, M., Martin, L., Servant, M., Sifeddine, A., Ferreira da Silva, M., Soubiès, F., Suguı̀o, K., Turcq, B., Van der Hammen, T., (1991). Mise en évidence de quatre phases d'ouverture de la forêt amazonienne dans le sud-est de l'Amazonie au cours des 60000 dernières années. Première comparaison avec d'autres régions tropicales. Comptes Rendus Académie des Sciences de Paris, 312, 673678.Google Scholar
Bard, E., Hamelin, B., Fairbanks, R.G., Zindler, A., (1990). Calibration of 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals. Nature, 345410.Google Scholar
Behling, H., (1996). First report on new evidence for the occurrence of Podocarpus and possible human presence at the mouth of the Amazon during the late-glacial. Vegetation History and Archaeobotany, 5, 241246.CrossRefGoogle Scholar
Behling, H., Negrelle, R.R.B., Colinvaux, P., (1997). Modern pollen rain data from the tropical Atlantic rain forest, Reserva Volta Velha, South Brazil. Review of Palaeobotany and Palynology, 97, 287299.Google Scholar
Bradbury, J.P., (1997). Sources of glacial moisture in Mesoamerica. Quaternary International, 43/44, 97110.Google Scholar
Bush, M., Stute, M., Ledru, M.-P., Behling, H., Colinvaux, P.A., De Oliveira, P., Grimm, E.C., Haberle, S., Hooghiemstra, H., Leyden, B.W., Salgado-Labouriau, M.L., Webb, R., (2000). Paleotemperature estimates for the lowland Americas between 30°S and 30°N at the last glacial maximum.Markgraf, V. Present and Past Inter-hemispheric Climate Linkages in the Americas and their Societal Effects, Cambridge University Press, 293306.Google Scholar
Colinvaux, P.A., Bush, M.B., Steinitz-Kannan, M., Miller, M.C., (1997). Glacial and postglacial records from the Ecuadorian Andes and Amazon. Quaternary Research, 48, 6978.Google Scholar
Colinvaux, P.A., De Oliveira, P.E., Moreno, J.E., Miller, M.C., Bush, M.B., (1996). A long pollen record from lowland Amazonia: Forest and cooling in glacial times. Science, 274, 8588.CrossRefGoogle Scholar
De Oliveira, P.E., (1996). Glacial cooling and forest disequilibrium in western Amazonia. Anaı̀s da Acadêmia Brasileira de Ciências, 68, 129138.Google Scholar
Faegri, K., Iversen, J., (1989). Textbook of Pollen Analysis. Wiley, Chichester.Google Scholar
Gaussen, H., (1973). Les Gymnospermes actuelles et fossiles. Travaux Laboratoire Forestier (Toulouse), 12, 1143.Google Scholar
Gentry, A.H., (1993). A Field Guide to the Families and Genera of Woody Plants of Northwest South America. Conservation International, Washington.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S.J., Jouzel, J., (1993). Comparison of the oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366554.Google Scholar
Haberle, S., (1997). Upper Quaternary vegetation and climate history of the Amazon Basin: Correlating marine and terrestrial pollen records.Flood, R.D., Piper, D.J.W., Klaus, A., Peterson, L.C. Proceedings of the Ocean Drilling Program, Scientific Results, Amazon Fan, Ocean Drilling Program, College Station.381396.Google Scholar
Haberle, S.G., Maslin, M.A., (1999). Late Quaternary vegetation and climate change in the Amazon Basin on a 50,000 year pollen record from the Amazon fan, ODP Site 932. Quaternary Research, 51, 2738.Google Scholar
Hansen, B.C.S., Rodbell, D.T., (1995). A late-glacial/Holocene pollen record from the eastern Andes of Northern Peru. Quaternary Research, 44, 216227.Google Scholar
Harris, S.E., Mix, A.C., (1999). Pleistocene precipitation balance in the Amazon Basin recorded in deep sea sediments. Quaternary Research, 51, 1426.Google Scholar
Heusser, C.J., (1971). Pollen and Spores of Chile. Univ. of Arizona Press, Tucson.CrossRefGoogle Scholar
Hooghiemstra, H., (1984). Vegetational and Climatic History of the High Plain of Bogotá, Colombia: A Continuous Record of the Last 3.5 Million Years. Cramer, Vaduz.Google Scholar
Hughen, K.A., Overpeck, J.T., Peterson, L.C., Trumbore, S., (1996). Rapid climate changes in the tropical Atlantic region during the last deglaciation. Nature, 380, 5154.Google Scholar
Joly, A.B., (1985). Botânica. Introduçâo á Taxonomia Vegetal. Companhia Editoria Nacional, Brazil.Google Scholar
Ledru, M.-P., (1993). Late Quaternary environmental and climatic changes in central Brazil. Quaternary Research, 39, 9098.Google Scholar
Ledru, M.-P. (in press), Late Quaternary history and evolution of the cerrados as revealed by palynological records. In, The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna, Oliveira, P. S., and Marquis, R. J., Eds, Columbia Univ. Press, New York.Google Scholar
Ledru, M.-P., Behling, H., Fournier, M., Martin, L., Servant, M., (1994). Localisation de la forêt d'Araucaria du Brésil au cours de l'Holocène. Implications paléoclimatiques. Comptes Rendus de l'Academie des Sciences de Paris, 317, 517521.Google Scholar
Ledru, M.-P., Bertaux, J., Sifeddine, A., Suguio, K., (1998). Absence of last glacial maximum records in lowland tropical forest. Quaternary Research, 49, 233237.Google Scholar
Ledru, M.-P., Salgado Labouriau, M.L., Lorscheitter, M.L., (1998). Vegetation dynamics in Southern and Central Brazil during the last 10,000 yr B. P. Review of Palaeobotany and Palynology, 99, 131142.Google Scholar
Leroux, M., (1993). The Mobile Polar High: A new concept explaining present mechanisms of meridional air-mass and energy exchanges and global propagation of palaeoclimatic changes. Global and Planetary Changes, 7, 6993.CrossRefGoogle Scholar
Leroux, M., (1996). La Dynamique du Temps et du Climat. Masson, Paris.Google Scholar
Lin, H.-L., Peterson, L.C., Overpeck, J.T., Trumbore, S.E., Murray, D.W., (1997). Late Quaternary change from ∂18O records of multiple species of planktonic foraminifera: High-resolution records from the anoxic Cariaco Basin, Venezuela. Paleoceanography, 12, 415427.CrossRefGoogle Scholar
Mainieri, C., Pires, J.M., (1973). O gênero. Podocarpus no Brasil. Silvicultura em São Paulo, 8, 124.Google Scholar
Marchant, R., Behling, H., Bush, M., Cleef, A., Duivenvoorden, J., De Oliveira, P., Garcia-Lozano, S., Hooghiemstra, H., Ledru, M.-P., Markgraf, V., Moreno, P., (2000). Distributional and ecological information concerning the pollen taxa of Latin America. Review of Palaeobotany and Palynology, .Google Scholar
Marengo, J.A., Hastenrath, S., (1993). Case studies of extreme climatic events in the Amazon Basin. Journal of Climate, 1, 617627.2.0.CO;2>CrossRefGoogle Scholar
Marengo, J.A., Rogers, J.C., (2000). Polar outbreaks in the Americas: Assessments and impacts during recent and past climates.Markgraf, V. Present and Past Inter-hemispheric Climate Linkages in the Americas and their Societal Effects, Cambridge University Press, .Google Scholar
Markgraf, V., d'Antoni, H.L., (1978). Pollen flora of Argentina. Univ. of Arizona Press, Tucson.Google Scholar
Martin, L., Bertaux, J., Correge, T., Ledru, M.-P., Mourguiart, P., Sifeddine, A., Soubies, F., Wirrmann, D., Suguio, K., Turcq, B., (1997). Astronomical forcing of contrasting rainfall changes in tropical South America between 12,400 and 8800 cal yr B.P. Quaternary Research, 47, 117122.Google Scholar
Rind, D., (2000). Relating paleoclimate data and past temperature gradients: Some suggestive rules. Quaternary Science Reviews, 19, 381390.Google Scholar
Roubik, D.W., Moreno, J.E., (1991). Pollen and Spores of Barro Colorado Island. Missouri Botanical Garden, .Google Scholar
Salgado Labouriau, M.L., (1973). Contribuição á Palinologia dos Cerrados. Acadêmia Brasileira de Ciências, .Google Scholar
Sifeddine, A., Bertrand, P., Fournier, M., Martin, L., Servant, M., Soubies, F., Suguio, K., Turcq, B., (1994). La sédimentation organique lacustre en milieu tropical humide (Carajás, Amazonie orientale, Brésil): Relation avec les changements climatiques au cours des 60,000 dernières années. Bulletin Société Géologique de France, 165, 613621.Google Scholar
Sifeddine, A., Frolich, F., Fournier, M., Martin, L., Servant, M., Soubies, F., Turcq, B., Suguio, K., Volkmer-Ribeiro, C., (1994). La sédimentation lacustre indicateur des paléoenvironnements au cours des 30,000 dernières années (Carajás, Amazonie, Brésil). Comptes Rendus de l'Académie des Sciences de Paris Série 2, 318, 16451652.Google Scholar
Sifeddine, A., Cordeiro, R.C., Ledru, M.-P., Turcq, B., Albuquerque, A.L.S., Martin, L., Landim Dominguez, J.M., Pasenau, H., Ceccantini, G., Abrão, J.J., (1999). Late glacial multi-proxy paleo-environmental reconstruction in Caço Lake (Maranhão state, Brazil). INQUA Congress, Durban, South Africa, p. 63.Google Scholar
Steig, E.J., Brook, E.J., White, J.W.C., Sucher, C.M., Bender, M.L., Lehman, S.J., Morse, D.L., Waddington, E.D., Clow, G.D., (1998). Synchronous climate changes in Antarctica and the North Atlantic. Science, 282, 9295.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., van der Plicht, J., Spurk, M., (1998). INTCAL98 radiocarbon age calibration 24,000–0 cal B.P. Radiocarbon, 40, 10411083.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Lin, P.-N., Henderson, K.A., Cole-Dai, J., Bolzan, J.F., Liu, K.-B., (1995). Late glacial stage and Holocene tropical ice core records from Huascarán, Peru. Science, 269, 4650.Google Scholar
Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Sowers, T.A., Henderson, K.A., Zagorodnov, V.S., Lin, P.-N., Mikhalenko, V.N., Campen, R.K., Bolzan, J.F., Cole-Dai, J., Francou, B., (1998). A 25,000-year tropical climate history from Bolivian ice cores. Science, 282, 18581863.Google Scholar
van der Hammen, T., Absy, M.L., (1994). Amazonia during the last glacial. Palaeogeograpy, Palaeoclimatology, Palaeoecology, 109, 247261.CrossRefGoogle Scholar
Vuille, M., Amman, C., (1997). Regional snowfall patterns in the high, arid Andes. Climatic Change, 36, 413423.Google Scholar