Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T15:59:14.362Z Has data issue: false hasContentIssue false

Late Weichselian Glaciation of the Russian High Arctic

Published online by Cambridge University Press:  20 January 2017

Martin J. Siegert
Affiliation:
Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, United Kingdom
Julian A. Dowdeswell
Affiliation:
Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, United Kingdom
Martin Melles
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A43, D-14473, Potsdam, Germany

Abstract

A numerical ice-sheet model was used to reconstruct the Late Weichselian glaciation of the Eurasian High Arctic, between Franz Josef Land and Severnaya Zemlya. An ice sheet was developed over the entire Eurasian High Arctic so that ice flow from the central Barents and Kara seas toward the northern Russian Arctic could be accounted for. An inverse approach to modeling was utilized, where ice-sheet results were forced to be compatible with geological information indicating ice-free conditions over the Taymyr Peninsula during the Late Weichselian. The model indicates complete glaciation of the Barents and Kara seas and predicts a “maximum-sized” ice sheet for the Late Weichselian Russian High Arctic. In this scenario, full-glacial conditions are characterized by a 1500-m-thick ice mass over the Barents Sea, from which ice flowed to the north and west within several bathymetric troughs as large ice streams. In contrast to this reconstruction, a “minimum” model of glaciation involves restricted glaciation in the Kara Sea, where the ice thickness is only 300 m in the south and which is free of ice in the north across Severnaya Zemlya. Our maximum reconstruction is compatible with geological information that indicates complete glaciation of the Barents Sea. However, geological data from Severnaya Zemlya suggest our minimum model is more relevant further east. This, in turn, implies a strong paleoclimatic gradient to colder and drier conditions eastward across the Eurasian Arctic during the Late Weichselian.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B. (1990). Multiple steady states in ice-water-till systems. Annals of Galciology. 14, 15.Google Scholar
Alley, R.B., Blankenship, D.D., Rooney, S.T., Bentley, C.R. (1989). Water-pressure coupling of sliding and bed deformation, III: Application to Ice Stream B, Antarctica. Journal of Glaciology. 35, 130139.CrossRefGoogle Scholar
Andersen, E.S., Dokken, T.M., Elverhøi, A., Solheim, A., Fossen, I. (1996). Late Quaternary sedimentation and glacial history of the western Svalbard continental margin. Marine Geology. 133, 123156.CrossRefGoogle Scholar
Astakhov, V.I. (1997). Late glacial events in the central Russian Arctic. Quaternary International. 41/42, 1725.Google Scholar
Astakhov, V.I., Isayava, L.L. (1988). The Ice Hill—An example of the retarded deglaciation in Siberia. Quaternary Science Reviews. 6, 152174.Google Scholar
Astakhov, V.I., Svendsen, J.I., Matiouchkov, A., Mangerud, J., Maslenikova, O., Tveranger, J. (1999). Marginal formations of the last Kara and Barents ice sheets in northern European Russia. Boreas. 28, 2345.Google Scholar
Bolshiyanov, D.Yu., Makeyev, V.M. (1995). The Archipelago Severnaya Zemlya: Glaciation, History, Environment. p. 216.Google Scholar
Boulton, G.S., Hindmarsh, R.C.A. (1987). Sediment deformation beneath glaciers: Rheology and geological consequences. Journal of Geophysical Research. 92, 90599082.Google Scholar
Dowdeswell, J.A., Siegert, M.J. (1999). Ice-sheet numerical modeling and marine geophysical measurements of glacier-derived sedimentation on the Eurasian Arctic continental margins. Geological Society of America Bulletin. 111, 10801097.Google Scholar
Dowdeswell, J.A., Drewry, D.J., Cooper, A.P.R., Gorman, M.R., Liestøl, O., Orheim, O. (1986). Digital mapping of the Nordaustlandet ice caps from airborne geophysical investigations. Annals of Glaciology. 8, 5158.Google Scholar
Dowdeswell, J. A, Dowdeswell, E. K, Williams, M and Glazovsky, A. F. in press, The Glaciology of the Russian High Arctic from Landsat Imagery, U.S. Geological Survey Professional Paper 1386-F.Google Scholar
Dowdeswell, J.A., Gorman, M.R., Glazovsky, A.F., Macheret, Y.Y. (1996). Airborne radio-echo sounding of the ice caps on Franz Josef Land in 1994. Materialy Glyatsiologicheskikh Issledovaniy, Khronika. 80, 248254.Google Scholar
Dowdeswell, J.A., Gorman, M.R., Williams, M., Glazovsky, A.F., Macheret, Y.Y., Vasilenko, E.V., Hubberten, H.W., Miller, H., Savatyugin, L.M. (1997). Airborne radio-echo survey of the ice caps on Severnaya Zemlya, Russian High Arctic. Materialy Glyatsiologicheskikh Issledovaniy, Khronika. 83, 213217.Google Scholar
Ebel, T., Melles, M., Niessen, F. (1999). Laminated sediments from Levinson-Lessing Lake, northern Central Siberia—A 30,000 year record of environmental history?. Kassens, H., Bauch, H.A., Dmitrenko, I.A., Eicken, H., Hubberten, H.W., Melles, M., Thiede, J., Timokhov, L.A. Land–Ocean Systems in the Siberian Arctic: Dynamics and History. Springer, Berlin/Heidelberg/New York., 425435.Google Scholar
Elverhøi, A., Svendsen, J.I., Solheim, A., Andersen, E.S., Milliman, J., Mangerud, J., Hooke, R.L. (1995). Late Quaternary sediment yield from the high arctic Svalbard area. Journal of Geology. 103, 117.Google Scholar
Fairbanks, R.G. (1989). A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature. 342, 637643.Google Scholar
Fleming, K.M., Dowdeswell, J.A., Oerlemans, J. (1997). Modelling the mass balance of north-west Spitsbergen glaciers and responses to climate change. Annals of Glaciology. 24, 203210.Google Scholar
Forman, S.L., Lubinski, D., Miller, G.H., Matishov, G.G., Korsun, S., Snyder, J., Herlihy, F., Weihe, R., Myslivets, V. (1996). Postglacial emergence of western Franz Joseph Land, Russia, and retreat of the Barents Sea ice sheet. Quaternary Science Reviews. 15, 7790.Google Scholar
Forman, S.L., Weihe, R., Lubinski, D., Tarasov, G., Korsun, S., Matishov, G. (1997). Holocene relative sea-level history of Franz Josef Land, Russia. Geological Society of America Bulletin. 109, 11161133.Google Scholar
Fortuin, J.P.F., Oerlemans, J. (1990). Parameterization of the annual surface temperature and mass balance of Antarctica. Annals of Glaciology. 14, 7884.CrossRefGoogle Scholar
Grosswald, M.G. (1998). Late Weichselian ice sheets in Arctic and Pacific Siberia. Quaternary International. 45/46, 318.CrossRefGoogle Scholar
Hahne, J., Melles, M. (1997). Late and postglacial vegetation and climate history of the south-western Taymyr Peninsula (Central Siberia), as revealed by pollen analysis of sediments from Lake Lama. Vegetation History and Archaeobotany. 6, 18.CrossRefGoogle Scholar
Hahne, J., Melles, M. (1999). Climate and vegetation history on the Taymyr Peninsula since Middle Weichselian time—Palynological evidence from lake sediments. Kassens, H., Bauch, H.A., Dmitrenko, I.A., Eicken, H., Hubberten, H.W., Melles, M., Thiede, J., Timokhov, L.A. Land–Ocean Systems in the Siberian Arctic: Dynamics and History. Springer, Berlin/Heidelberg/New York., 407423.CrossRefGoogle Scholar
Harwart, S., Hagedorn, B., Melles, M., Wand, U. (1999). Lithological and biochemical properties in sediments of Lama Lake as indicators for the Late Pleistocene and Holocene climatic evolution of the southern Taymyr Peninsula, Central Siberia. Boreas. 28, 167180.Google Scholar
Hubberten, H.-W., Melles, M., Siegert, C., Bolshiyanov, D.U. (1996). On the Late Quaternary climatic and environmental history of the Taymyr Peninsula and Severnaya Zemlya archipelago, central Siberia. Quaternary Environments of the Eurasian North (QUEEN).Google Scholar
Hughes, T.J. (1992). Theoretical calving rates from glaciers along ice walls grounded in water of variable depths. Journal of Glaciology. 38, 282294.Google Scholar
Kind, N.V., Leonov, B.N. (1982). The Anthropogen of the Taymyr Peninsula. Nauka, Moscow., p. 183.Google Scholar
Kleiber, H.P., Niessen, F. (1999). Late Pleistocene paleo-river channels on the Laptev Sea shelf—Implications from sub-bottom profiling. Kassens, H., Bauch, H.A., Dmitrenko, I.A., Eicken, H., Hubberten, H.W., Melles, M., Thiede, J., Timokhov, L.A. Land–Ocean Systems in the Siberian Arctic: Dynamics and History. Springer, Berlin/Heidelberg/New York., 657665.CrossRefGoogle Scholar
Lambeck, K. (1995). Constraints on the Late Weichselian ice sheet over the Barents Sea from observations of raised shorelines. Quaternary Science Reviews. 14, 116.Google Scholar
Landvik, J.Y., Bondevik, S., Elverhøi, A., Fjeldskaar, W., Mangerud, J., Siegert, M.J., Salvigsen, O., Svendsen, J.-I., Vorren, T.O. (1998). Last glacial maximum of Svalbard and the Barents Sea area: Ice sheet extent and configuration. Quaternary Science Reviews. 17, 4375.Google Scholar
Mahaffy, M.W. (1976). A three-dimensional numerical model of ice sheets: Tests on the Barnes Ice Cap, Northwest Territories. Journal of Geophysical Research. 81, 10591066.CrossRefGoogle Scholar
Makeyev, V.M., Arslanov, Kh.A., Garutt, V.E. (1979). The ages of mammoths from the Severnaya Zemlya Archipelago and some problems of the late Pleistocene paleogeography. Doklady Academy Nauk SSSR. 245, 421424.Google Scholar
Manabe, S., Bryan, K. Jr.. (1985). CO2-induced change in a coupled ocean–atmosphere model, and its paleoclimatic implications. Journal of Geophysical Research. 90, 1168911707.Google Scholar
Mangerud, J., Svendsen, J.I. (1992). The last interglacial–glacial period on Spitsbergen, Svalbard. Quaternary Science Reviews. 11, 633664.Google Scholar
Mangerud, J., Bolstad, M., Elgersma, A., Helliksen, D., Landvik, J.Y., Lønne, I., Lycke, A.K., Salvigsen, O., Sandahl, T., Svendsen, J.I. (1992). The Last Glacial Maximum on Spitsbergen, Svalbard. Quaternary Research. 38, 131.CrossRefGoogle Scholar
Mangerud, J., Jansen, E., Landvik, J. (1996). Late Cenozoic history of the Scandinavian and Barents Sea ice sheets. Global and Planetary Change. 12, 1126.CrossRefGoogle Scholar
Mangerud, J., Svendsen, J.I., Astakhov, V.I. (1999). Age and extent of the Barents and Kara ice sheets in Northern Russia. Boreas. 18, 4680.Google Scholar
Melles, M., Siegert, C., Hahne, J., Hubberten, H.W. (1996). Klima—und Umweltgeschischte des nördlichen Mittelsibriens im Spartquatär—erste Ergebnisse. Geowissenschaften. 14, 376380.Google Scholar
Möller, P., Bolshiyanov, D.Yu., Bergsten, H. (1999). Weichselian geology and palaeoenvironmental history of the Taymyr Peninsula, Siberia, indicating no glaciation during the last global glacial maximum. Boreas. 28, 92114.Google Scholar
Niessen, F., Ebel, T., Kopsch, C., Federov, G.B. (1999). High-resolution seismic stratigraphy of lake sediments on the Taymyr Peninsula, Central Siberia. Kassens, H., Bauch, H.A., Dmitrenko, I.A., Eicken, H., Hubberten, H.W., Melles, M., Thiede, J., Timokhov, L.A. Land–Ocean Systems in the Siberian Arctic: Dynamics and History. Springer, Berlin/Heidelberg/New York., 437456.Google Scholar
Oerlemans, J., van der Veen, C.J. (1984). Ice Sheets and Climate. p. 216.Google Scholar
Paterson, W.S.B. (1994). The Physics of Glaciers. Pergamon, Oxford.Google Scholar
Pavlidis, Yu.A. (1992). The scale of the last glaciation in the Arctic basin. Oceanology. 32, 352365.Google Scholar
Pavlidis, Yu.A., Dunayev, N.N., Shcherbakov, F.A. (1997). The late Pleistocene plaeogeography of Arctic Eurasian shelves. Quaternary International. 41/42, 39.Google Scholar
Payne, A.J., Sugden, D.E., Clapperton, C.M. (1989). Modeling the growth and decay of the Antarctic Peninsula Ice Sheet. Quaternary Research. 31, 119134.Google Scholar
Peltier, W.R. (1994). Ice Age paleotopography. Science. 265, 195201.Google Scholar
Pelto, M.S., Warren, C.R. (1991). Relationship between tidewater glacier calving velocity and water depth at the calving front. Annals of Glaciology. 15, 115118.Google Scholar
Pelto, M.S., Higgins, S.M., Hughes, T.J., Fastook, J.L. (1990). Modelling mass-balance changes during a glaciation cycle. Annals of Glaciology. 14, 238241.Google Scholar
Polyak, L., Forman, S.L., Herlihy, F.A., Ivanov, G., Krinitsky, P. (1997). Late Weichselian deglacial history of the Svyataya (Saint) Anna Trough, northern Kara Sea, Arctic Russia. Marine Geology. 143, 169188.Google Scholar
Punkari, M. (1995). Glacial flow systems in the zone of confluence between the Scandinavian and Novaya Zemlya ice sheets. Quaternary Science Reviews. 14, 589603.Google Scholar
Romanovski, N.N. (1993). Basic Understanding of Cryogenesis of the Lithosphere. MSU Publication, Moscow., p. 336.Google Scholar
Shackleton, N.J. (1987). Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews. 6, 183190.Google Scholar
Siegert, C., Derevyagin, A.Yu., Shilova, G.N., Hermichen, W.-D., Hiller, A. (1999). Paleoclimatic indicators from permafrost sequences in the eastern Taymyr Lowland. Kassens, H., Bauch, H.A., Dmitrenko, I.A., Eicken, H., Hubberten, H.W., Melles, M., Thiede, J., Timokhov, L.A. Land–Ocean Systems in the Siberian Arctic: Dynamics and History. Springer, Berlin/Heidelberg/New York., 477499.CrossRefGoogle Scholar
Siegert, M.J. (1993). Numerical Modelling Studies of the Svalbard–Barents Sea Ice Sheet. University of Cambridge, .Google Scholar
Siegert, M.J., Dowdeswell, J.A. (1995). Numerical modeling of the Late Weichselian Svalbard–Barents Sea ice sheet. Quaternary Research. 43, 113.Google Scholar
Siegert, M.J., Fjeldskaar, W. (1996). Isostatic uplift in the Late Weichselian Barents Sea: Implications for ice sheet growth. Annals of Glaciology. 23, 352358.Google Scholar
Solheim, A., Russwurm, L., Elverhøi, A., Berg, M.N. (1990). Glacial geomorphic features in the northern Barents Sea: Direct evidence for grounded ice and implications for the pattern of deglaciation and late glacial sedimentation. Dowdeswell, J.A., Scource, J.D. Glacimarine Environments: Processes and Sediments. 253268.Google Scholar
Svendsen, J.I., Astakov, V.I., Bolshiyanov, D.Yu., Demidov, I., Dowdeswell, J.A., Gataullin, V., Hjort, Ch., Hubberten, H.W., Larsen, E., Mangerud, J., Melles, M., Möller, P., Saarnisto, M., Siegert, M.J. (1999). Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian. Boreas. 28, 234242.Google Scholar
Tveranger, J., Astakhov, V., Mangerud, J. (1995). The margin of the last Barents–Kara Ice Sheet at Markhida, northern Russia. Quaternary Research. 44, 328340.Google Scholar
Vasil'chuk, Y., Punning, J.-M., Vasil'chuk, A. (1997). Radiocarbon ages of mammoths in northern Eurasia: Implications for population development and Late Quaternary environment. Radiocarbon. 39, 118.Google Scholar
Velichko, A.A., Isayeva, L.L., Makeyev, V.M., Matishov, G.G., Faustova, M.A. (1984). Late Pleistocene glaciation of the Arctic shelf, and the reconstruction of Eurasian ice sheets. Velichko, A.A. Late Quaternary Environments of the Soviet Union. Longman, London., 3544.Google Scholar
Velichko, A.A., Kononov, Yu.M., Faustova, M.A. (1997). The last glaciation of Earth: Size and volume of ice sheets. Quaternary International. 41/42, 4351.Google Scholar