Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T13:41:06.678Z Has data issue: false hasContentIssue false

Late Quaternary vegetation, fire and climate history reconstructed from two cores at Cerro Toledo, Podocarpus National Park, southeastern Ecuadorian Andes

Published online by Cambridge University Press:  20 January 2017

Corinna Brunschön*
Affiliation:
Department of Palynology and Climate Dynamics, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
Hermann Behling
Affiliation:
Department of Palynology and Climate Dynamics, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
*
Corresponding author. Fax: +49 551 39 8449. E-mail address:[email protected] (C. Brunschön).

Abstract

The last ca. 20,000 yr of palaeoenvironmental conditions in Podocarpus National Park in the southeastern Ecuadorian Andes have been reconstructed from two pollen records from Cerro Toledo (04°22'28.6"S, 79°06'41.5"W) at 3150 m and 3110 m elevation. Páramo vegetation with high proportions of Plantago rigida characterised the last glacial maximum (LGM), reflecting cold and wet conditions. The upper forest line was at markedly lower elevations than present. After ca. 16,200 cal yr BP, páramo vegetation decreased slightly while mountain rainforest developed, suggesting rising temperatures. The trend of increasing temperatures and mountain rainforest expansion continued until ca. 8500 cal yr BP, while highest temperatures probably occurred from 9300 to 8500 cal yr BP. From ca. 8500 cal yr BP, páramo vegetation re-expanded with dominance of Poaceae, suggesting a change to cooler conditions. During the late Holocene after ca. 1800 cal yr BP, a decrease in páramo indicates a change to warmer conditions. Anthropogenic impact near the study site is indicated for times after 2300 cal yr BP. The regional environmental history indicates that through time the eastern Andean Cordillera in South Ecuador was influenced by eastern Amazonian climates rather than western Pacific climates.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakker, J., Moscol Olivera, M., and Hooghiemstra, H. Holocene environmental change at the upper forest line in northern Ecuador. The Holocene 18, (2008). 117.Google Scholar
Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R. Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies 198, (2008). Springer, Berlin, Heidelberg. 525 pp CrossRefGoogle Scholar
Beck, E., Makeschin, F., Haubrich, F., Richter, M., Bendix, J., and Valerezo, C. The Ecosystem (Reserva Biológica San Francisco). Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R. 2008a. Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies 198, (2008). Springer, Berlin, Heidelberg. 113.CrossRefGoogle Scholar
Beck, E., Kottke, I., Bendix, J., Makeschin, F., and Mosandl, R. Gradients in a tropical mountain ecosystem — a synthesis. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R. 2008a. Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies 198, (2008). Springer, Berlin, Heidelberg. 451463.CrossRefGoogle Scholar
Behling, H., (1993). Untersuchungen zur spätpleistozänen und holozänen Vegetations- und Klimageschichte der tropischen Küstenwälder und der Araukarienwälder in Santa Catarina (Südbrasilien). Dissertationes Botanicae 206, Cramer, Berlin, Stuttgart., 149 pp.Google Scholar
Bendix, J., Rollenbeck, R., Richter, M., Fabian, P., and Emck, P. Climate. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R. 2008a: Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies 198, (2008). Springer, Berlin, Heidelberg. 6373.Google Scholar
Bendix, J., Rollenbeck, R., Fabian, P., Emck, P., Richter, M., and Beck, E. Climate variability. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R. 2008a: Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies 198, (2008). Springer, Berlin, Heidelberg. 281290.CrossRefGoogle Scholar
Bosman, A.F., Hooghiemstra, H., and Cleef, A.M. Holocene mire development and climatic change from high Andean Plantago rigida cushion mire. The Holocene 3, (1994). 233243.CrossRefGoogle Scholar
Bush, M.B., and Colinvaux, P.A. A 7000-year pollen record from the Amazon lowlands, Ecuador. Vegetatio 76, (1988). 141154.CrossRefGoogle Scholar
Bush, M.B., and Rivera, R. Reproductive ecology and pollen representation among neotropical trees. Global Ecology and Biogeography 10, (2001). 359367.Google Scholar
Bush, M.B., Colinvaux, P.A., Wiemann, M.C., Piperno, D.R., and Liu, K.B. Late Pleistocene temperature depression and vegetation change in Ecuadorian Amazonia. Quaternary Research 34, (1990). 330345.Google Scholar
Clapperton, C.M., and Seltzer, G.O. Glaciation during marine isotope stage 2 in the American Cordillera. Markgraf, V. 2001. Interhemispheric Climate Linkages. (2001). Academic Press, 173181.Google Scholar
Cleef, A.M. Characteristics of neotropical paramo vegetation and its subantarctic relations. Troll, C., and Lauer, W. 1978. Geoecological Relations between the Southern Temperate Zone and the Tropical Mountains. Erdwissenschaftliche Forschung XI. Franz Steiner, Wiesbaden. (1978). 365390.Google Scholar
Colinvaux, P.A. Amazon diversity in light of the paleoecological record. Quaternary Science Reviews 6, (1987). 93114.CrossRefGoogle Scholar
Colinvaux, P.A., Frost, M., Frost, I., Liu, K.-B., and Steinitz-Kannan, M. Three pollen diagrams of forest disturbance in the western Amazon basin. Review of Palaeobotany and Palynology 55, (1988). 7381.Google Scholar
Colinvaux, P.A., Olson, K., and Liu, K.-B. Late-Glacial and Holocene pollen diagrams from two endorheic lakes of the inter-Andean Plateau of Ecuador. Review of Palaeobotany and Palynology 55, (1988). 8399.Google Scholar
Colinvaux, P.A., Bush, M.B., Steinitz-Kannan, M., and Miller, M.C. Glacial and postglacial pollen records from the Ecuadorian Andes and Amazon. Quaternary Research 48, (1997). 6978.CrossRefGoogle Scholar
Emck, P., (2007). A Climatology of South Ecuador — With Special Focus on the Major Andean Ridge as Atlantic–Pacific climate Divide. Dissertation, Universität Erlangen-Nürnberg, .Google Scholar
Fægri, K., and Iversen, J. Textbook of Pollen Analysis. 4th ed. (1989). Wiley, Chichester. 328 pp Google Scholar
Furlow, J.J. The systematics of the American species of Alnus (Betulaceae). Rhodora 81, (1979). 1121.Google Scholar
Grimm, E.C. CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of the incremental sum of squares. Computer and Geosciences 13, (1987). 1335.CrossRefGoogle Scholar
Hansen, B.C., Rodbell, D.T., Seltzer, G.O., León, B., Young, K.R., and Abbott, M. Late-glacial and Holocene vegetation history from two sites in the western Cordillera of southwestern Ecuador. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 79108.CrossRefGoogle Scholar
Homeier, J., Werner, F.A., Gradstein, S.R., Breckle, S.-W., and Richter, M. Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R. 2008a: Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies 198, (2008). Springer, Berlin, Heidelberg. 87100.CrossRefGoogle Scholar
Hooghiemstra, H., (1984). Vegetation and climatic history of the High Plain of Bogota, Colombia: a continuous record of the last 3,5 million years. Dissertationes Botanicae 79, Cramer, Vaduz., 368 pp.Google Scholar
Josse, C. (Ed.), (2001). La biodiversidad de Ecuador. Informe 2000. Ministerio de Ambiente, EcoCiencia y UICN, Quito., 368 pp.Google Scholar
Kessler, M., (1995). Polylepis-Wälder Boliviens: Taxa, Ökologie, Verbreitung und Geschichte. Dissertationes Botanicae 246, Berlin, Stuttgart.Google Scholar
Liu, K.-B., and Colinvaux, P.A. Forest changes in the Amazon Basin during the last glacial maximum. Nature 318, (1985). 556557.CrossRefGoogle Scholar
Liu, K.-B., and Colinvaux, P.A. A 5200-year history of Amazon rain forest. Journal of Biogeography 15, (1988). 231248.Google Scholar
Lozano, P., Delgado, T., Aguirre, Z., (2003). Estado actual de la flora endemica exclusive y su distribucion en el Occidente del Parque Nacional Podocarpus. Funbotanica y Herbario y Jardin Botanico, . Loja, Ecuador.Google Scholar
Mark, B.G., Seltzer, G.O., and Rodbell, D.T. Late Quaternary glaciations of Ecuador, Peru and Bolivia. Ehlers, J., and Gibbard, P.L. 2004. Quaternary Glaciations — Extent and Chronology, Part III: South America, Asia, Africa, Australasia, Antarctica. Developments in Quaternary Science 2, (2004). 151163.Google Scholar
Mourguiart, P., and Ledru, M.-P. Last Glacial Maximum in an Andean cloud forest environment (Eastern Cordillera, Bolivia). . Geology 31, (2003). 195198.Google Scholar
Mutke, J., and Barthlott, W. Patterns of vascular plant diversity at continental to global scales. Biologiske Skrifter 55, (2005). 521531.Google Scholar
Niemann, H., and Behling, H. Past vegetation and fire dynamics. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R. 2008a: Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies 198. (2008). Springer, Berlin, Heidelberg. 101111.Google Scholar
Niemann, H., and Behling, H. Late Quaternary vegetation, climate and fire dynamics inferred from the El Tiro record in the southeastern Ecuadorian Andes. Journal of Quaternary Science 23, (2008). 203212.CrossRefGoogle Scholar
Niemann, H., and Behling, H. Late Pleistocene and Holocene vegetation development, climate variability and human impact inferred from Cocha Caranga multi-proxy records in the southeastern Ecuadorian Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 276, (2009). 114.CrossRefGoogle Scholar
Niemann, H., Haberzettl, T., and Behling, H. Holocene climate variability and vegetation dynamics inferred from the (11,700 cal yr BP) Laguna Rabadilla de Vaca sediment record in the southeastern Ecuadorian Andes. The Holocene 19, (2009). 307316.CrossRefGoogle Scholar
Richter, M., and Moreira-Muñoz, A. Climatic heterogeneity and plant diversity in southern Ecuador experienced by phytoindication. Review of Peruvian Biology 12, (2005). 217238.CrossRefGoogle Scholar
Richter, M., Diertl, K.-H., Peters, T., and Bussmann, R.W. Vegetation structures and ecological features of the upper timberline ecotone. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R. 2008a. Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies 198, (2008). Springer, Berlin, Heidelberg. 123135.Google Scholar
Rozsypal, A.A., (2000). Die pleistozäne Glazialmorphologie in Ecuador und Nordperu unter besonderer Betrachtung der Cordillera Oriental bei Loja. Diplomarbeit, Institut für Geographie, Universität Erlangen-Nürnberg, (unpublished).Google Scholar
Schubert, C., and Clapperton, C.M. Quaternary Glaciations in the Northern Andes (Venezuela, Colombia and Ecuador). Quaternary Science Reviews 9, (1990). 123135.CrossRefGoogle Scholar
Weng, C., Bush, M.B., and Athens, J.S. Holocene climate change and hydrarch succession in lowland Amazonian Ecuador. Review of Palaeobotany and Palynology 120, (2002). 7390.CrossRefGoogle Scholar
Weng, C., Bush, M.A., and Chepstow-Lusty, A.J. Holocene changes of Andean alder (Alnus acuminata) in highland Ecuador and Peru. Journal of Quaternary Science 19, (2004). 685691.CrossRefGoogle Scholar
Weninger, B., Jöris, O., Danzeglocke, U., (2004). Calpal: The Cologne radiocarbon CALibration and PALaeoclimate research package. URL:http://www.calpal.de [10 April 2008].Google Scholar