Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T02:25:54.210Z Has data issue: false hasContentIssue false

Late Quaternary Vegetation and Climate Change in the Amazon Basin Based on a 50,000 Year Pollen Record from the Amazon Fan, ODP Site 932

Published online by Cambridge University Press:  20 January 2017

Simon G. Haberle
Affiliation:
Smithsonian Tropical Research Institute, Box 2072, Balboa, Republic of Panama
Mark A. Maslin
Affiliation:
Environmental Change Research Centre, Department of Geography, University College London, 26 Bedford Way, London, WC1H 0AP, United Kingdom

Abstract

Hemipelagic sediments from the Amazon deep-sea fan, ODP Site 932 (5° 12.7′N, 47° 1.8′W), and continental shelf provide a 50,000-yr-long pollen record of Amazon Basin vegetation. The age model for Hole 932A is constrained by eight magnetic remanence intensity features, one paleomagnetic excursion, and three AMS14C dates.Alchornea,Melastomataceae, Myrtaceae, and Moraceae/Urticaceae are dominant taxa in the pollen record between 40,200 and 19,800 cal yr B.P. Andean taxa, such asPodocarpusandHedyosmum,increase in abundance between 19,800 and 11,000 cal yr B.P. and prior to 40,200 cal yr B.P. The Holocene pollen assemblage, derived from Amazon River and continental shelf sediments, is dominated by secondary growth taxa, such asCecropia.Climatic factors influencing the development of glacial and interglacial tropical vegetation are considered by comparing marine with terrestrial records of vegetation change. This comparison shows that the Amazon Basin forests were not extensively replaced by savanna vegetation during the glacial period, contradicting the refugia hypothesis.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behling, H. (1996). First report on new evidence for the occurrence of Podocarpus and possible human presence at the mouth of the Amazon during the late-glacial. Vegetation History and Archaeobotany 5, 241246.CrossRefGoogle Scholar
Behling, H., and Lichte, M. (1996). Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quaternary Research 48, 348358.Google Scholar
Bennett, K.D. (1994). Confidence intervals for age estimates and deposition times in late-Quaternary sediment sequences. The Holocene 4, 337348.Google Scholar
Bird, M.I., Fyfe, W.S., Pinheiro-Dick, D., and Chivas, A.R. (1992). Carbon isotope indicators of catchment vegetation in the Brazilian Amazon. Global Biogeochemical Cycles 6, 293306.Google Scholar
Bush, M.B. (1991). Modern pollen-rain data from South and Central America: A test of the feasibility of fine-resolution lowland tropical palynology. The Holocene 1, 162167.Google Scholar
Bush, M.B. (1994). Amazonian speciation: A necessarily complex model. Journal of Biogeography 21, 517.Google Scholar
Bush, M.B., and Colinvaux, P.A. (1990). A long climatic and vegetation record from lowland Panama. Journal of Vegetation Science 1, 105118.Google Scholar
Bush, M.B., Colinvaux, P.A., Wiemann, M.C., Piperno, D.R., and Liu, K.B. (1990). Late Pleistocene temperature depression and vegetation change in Ecuadorian Amazonia. Quaternary Research 34, 330345.Google Scholar
Caratini, C., Bellet, J., and Tissot, C. (1975). Étude microscopique de la matière organique: palynologie et palynofaciès. Géochimie des sédiments marins profonds. Orgon II, Atlantique, N.E. Brésil Editions du Centre National de la Recherche Scientifique, Paris.p. 157–178Google Scholar
Cisowski, S.M., and Hall, F. (1997). An examination of the paleointensity record and geomagnetic excursions recorded in Leg 155 cores.Flood, R.D., Piper, D.J.W., Klaus, A., Peterson, L.C. Proceedings of the Ocean Drilling Program, Scientific Results, Amazon Fan. Vol 155 Ocean Drilling Program, College Station.231244.Google Scholar
Colinvaux, P.A. (1987). Amazon diversity in the light of the paleoecological record. Quaternary Science Review 6, 93114.Google Scholar
Colinvaux, P.A., De Oliviera, P.E., Moreno, J.E., Miller, M.C., and Bush, M.B. (1996). A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274, 8588.Google Scholar
Coutinho, L.M. (1990). Fire in the ecology of the Brazilian cerrado.Goldammer, J.G. Fire in the Tropical Biota: Ecosystem Processes and Global Challenges Springer-Verlag, Berlin.82105.Google Scholar
Damuth, J.E. (1975). Quaternary climate change as revealed by calcium carbonate fluctuations in western Equatorial Atlantic sediments. Deep-Sea Research 22, 725743.Google Scholar
Damuth, J.E., and Fairbridge, R.W. (1970). Equatorial Atlantic deep-sea arkosic sands and ice age aridity in tropical South America. Geo-Marine Letters 3, 109117.Google Scholar
Damuth, J.E., and Kumar, N. (1975). Amazon cone, morphology, sediments, age, and growth pattern. Geological Society of America Bulletin 86, 863878.2.0.CO;2>CrossRefGoogle Scholar
Guilderson, T.P., Fairbanks, R.G., and Rubenstone, J.L. (1994). Tropical temperature variations since 20,000 years ago: Modulating interhemispheric climate change. Science 263, 663665.Google Scholar
Haberle, S.G. (1997). Late Quaternary vegetation and climate history of the Amazon Basin: Correlating marine and terrestrial pollen records.Flood, R.D., J. W. Piper, D., Klaus, A., Peterson, L.C. Proceedings of the Ocean Drilling Program, Scientific Results, Amazon Fan Ocean Drilling Program, College Station.381396.Google Scholar
Haffer, J. (1969). Speciation in Amazonian forest birds. Science 165, 131137.Google Scholar
Heusser, L.E., and Stock, C.E. (1984). Preparation techniques for concentrating pollen from marine sediments and other sediments with low pollen density. Palynology 8, 225227.Google Scholar
Hooghiemstra, H. (1984). Vegetation and Climatic History of the High Plain of Bogotá, Colombia: A Continuous Record of the Last 3.5 Million Years. Cramer, Berlin, Stuttgart.Google Scholar
Hoorn, C. (1993). Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynological study. Paleogeography, Paleoclimatology, Paleoecology 105, 267309.Google Scholar
Hoorn, C. (1997). Palynology of the Pleistocene glacial/interglacial cycles of the Amazon Fan (ODP Leg 155, Holes 940A, 944A, and 946A).Flood, R.D., J. W. Piper, D., Klaus, A., Peterson, L.C. Proceedings of the Ocean Drilling Program, Scientific Results, Amazon Fan Ocean Drilling Program, College Station.Google Scholar
Hoorn, C., Guerrero, J., Sarmiento, G.A., and Lorente, M.A. (1995). Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23, 237240.2.3.CO;2>CrossRefGoogle Scholar
Hope, G., and Tulip, J. (1994). A long vegetation history from lowland Irian Jaya, Indonesia. Paleogeography, Paleoclimatology, Paleoecology 109, 385398.Google Scholar
Huntley, B., and Birks, H.J.B. (1983). An Atlas of Past and Present Pollen Maps for Europe: 0–13,000 Years Ago. Cambridge Univ. Press, Cambridge.Google Scholar
Iriondo, M., and Latrubesse, E.M. (1994). A probable scenario for dry climate in central Amazonia during the Late Quaternary. Quaternary International 21, 121128.Google Scholar
Kershaw, A.P., McKenzie, G.M., and McMinn, A. (1993). A Quaternary vegetation history of northeastern Queensland from pollen analysis of ODP Site 820.McKenzie, J.A., Davies, P.J., Palmer-Jones, A. Proceedings of ODP, Scientific Results Ocean Drilling Program, College Station.107114.Google Scholar
Ledru, M.-P. (1993). Late Quaternary environmental and climatic changes in central Brazil. Quaternary Research 39, 9098.CrossRefGoogle Scholar
Ledru, M.-P., Bertaux, J., Sifeddine, A., and Suguio, K. (1998). Absence of last galcial maximum records in lowland tropical forests. Quaternary Research 49, 233237.Google Scholar
Leyden, B. (1985). Late Quaternary aridity and Holocene moisture fluctuations in the Lake Valencia basin, Venezuela. Ecology 66, 12791295.Google Scholar
Maslin, M.A., Burns, S., Erlenkeusser, H., and Hohnemann, C. (1997). Stable isotope records from ODP Sites 932 and 933.Flood, R.D., Piper, D.J.W., Klaus, A., Peterson, L.C. Proceedings of the Ocean Drilling Program, Scientific Results, Amazon Fan Ocean Drilling Program, College Station.305318.Google Scholar
Meade, R.H. (1994). Suspended sediments of the modern Amazon and Orinoco rivers. Quaternary International 21, 2939.Google Scholar
Mikkelsen, N., Maslin, M., Giraudeau, J., and Showers, W. (1997). Biostratigraphy and sedimentation rates of the Amazon Fan. Biostratigraphy and sedimentation rates of the Amazon Fan.Flood, R.D., Piper, D.J.W., Klaus, A., Peterson, L.C. Proceedings of the Ocean Drilling Program, Scientific Results, Amazon Fan Ocean Drilling Program, College Station.Google Scholar
Milliman, J.D., and Meade, R.H. (1983). Word-wide delivery of river sediment to the oceans. Journal of Geology 91, 121.Google Scholar
Milliman, J.D., Summerhayes, C.P., and Barretto, H.T. (1975). Quaternary sedimentation on the Amazon continental margin: A model. Geological Society of America Bulletin 86, 610614.Google Scholar
Mommersteeg, H. (1998). Vegetation Development and Cyclic and Abrupt Climatic Changes During the Late Quaternary: Palynological Evidence from the Colombian Eastern Cordillera. University of AmsterdamHugo de Vries Laboratory, Google Scholar
Müller, J., Irion, G., Nunes de Mello, J., and Junk, W. (1995). Hydrological changes of the Amazon during the last glacial–interglacial cycle in Central Amazonia (Brazil). Naturwissenschften 82, 232235.CrossRefGoogle Scholar
Nittrouer, C.A., Kuehl, S.A., Sternberg, R.W., Figueiredo, A.G. Jr., and Faria, L.E.C. (1995). An introduction to the geological significance of sediment transport and accumulation on the Amazon continental shelf. Marine Geology 125, 177192.Google Scholar
Piperno, D.R., Bush, M.B., and Colinvaux, P.A. (1990). Paleoenvironments and human occupation in late-glacial Panama. Quaternary Research 33, 108116.Google Scholar
Prance, G.T. (1987). Vegetation.Whitemore, T.C., Prance, G.T. Biogeography and Quaternary History in Tropical America Oxford Science Publications, Oxford.2844.Google Scholar
Räsänen, M.E., Salo, J.S., and Jungner, H. (1991). Holocene floodplain lake sediments in the Amazon:14 . Quaternary Science Reviews 10, 363372.Google Scholar
Rind, D. (1986). The dynamics of warm and cold climates. Journal of the Atmospheric Sciences 43, 324.Google Scholar
Roosevelt, A.C. (1991). Moundbuilders of the Amazon: Geophysical Archaeology on Marajó Island, Brazil. Academic Press, San Diego.Google Scholar
Salo, J. (1987). Pleistocene forest refuges in the Amazon: Evaluation of the biostratigraphical, lithostratigraphical and geomorphological data. Ann. Zool. Fenn. 24, 203211.Google Scholar
Sarnthein, M., Winn, K., Jung, S.J.A., Duplessy, J.-C., Labeyrie, L., Erlenkeuser, H., and Gansen, G. (1994). Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography 9, 209268.Google Scholar
Showers, W.J., and Bevis, M. (1988). Amazon cone isotopic stratigraphy: Evidence for the source of the tropical freshwater spike. Paleogeography, Paleoclimatology, Paleoecology 64, 189199.Google Scholar
Sifeddine, A., Fröhlich, F., Fournier, M., Martin, L., Servant, M., Soubiès, F., Turcq, B., Suguio, K., and Volmer-Ribeiro, C. (1994). La sédimentation lacustre indicateur de changements des paléoenvironnements au cours des 30 000 dernières années (Carajas, Amazonie, Brésil). Comptes Rendus de l'Académie des Sciences Paris, Série II 318, 16451652.Google Scholar
Stanley, E.A. (1996). The problem of reworked pollen and spores in marine sediments. Marine Geology 4, 397408.Google Scholar
Street-Perrot, F.A., Huang, Y., Perrott, R.A., Eglinton, G., Barker, P., Khelifa, L.B., Harkness, D.D., and Olago, D.O. (1997). Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278, 1422 CrossRefGoogle Scholar
Stow, D.A.W., Howell, D.G., and Nelson, H.C. (1985). Sedimentary, tectonic, and sea-level controls.Bouma, A.H., Normark, W.R., Barnes, N.E. Submarine Fans and Related Turbidite Systems Springer-Verlag, New York.1522.Google Scholar
Stuiver, M., and Reimer, P.J. (1993). Extended14 . Radiocarbon 35, 215230.Google Scholar
Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J.F., Schlosser, P., Broecker, W.S., and Bonani, G. (1995). Cooling of lowland tropical Brazil (5°C) during the last glacial maximum. Science 269, 379383.Google Scholar
van der Hammen, T., and Absy, M.L. (1994). Amazonia during the last glacial. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 247261.Google Scholar
van der Hammen, T., Duivenvoorden, J.F., Lips, J.M., Urrego, L.E., and Espejo, N. (1992). Late Quaternary of the middle Caquetá River area (Colombian Amazonia). Journal of Quaternary Science 7, 4555.Google Scholar
van't Veer, R., Ran, E.T.H., Mommersteeg, H.J.P.M., and Hoogheimstra, H. (1995). Multivariate analysis of the middle and late Pleistocene Funza pollen records of Colombia. Mededelingen Rijks Geologische Dienst 52, 195212.Google Scholar
Wijmstra, T.A., and van der Hammen, T. (1966). Palynological data on the history of tropical savannas in Northern South America. Leidse Mededelingen 38, 7190.Google Scholar