Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-19T12:25:15.258Z Has data issue: false hasContentIssue false

Late Quaternary Upwelling Variations in the Eastern Equatorial Atlantic Ocean as Inferred from Dinoflagellate Cysts, Planktonic Foraminifera, and Organic Carbon Content

Published online by Cambridge University Press:  20 January 2017

Christine Höll
Affiliation:
Historische Geologie/Paläontologie, Universität Bremen, Fachbereich-5 Geowissenschaften, Postfach 330 440, 28334, Bremen, Germany, E-mail: [email protected]
Sylvia Kemle-von Mücke
Affiliation:
Meeresgeologie, Universität Bremen, Fachbereich-5 Geowissenschaften, Postfach 330 440, 28334, Bremen, Germany

Abstract

Analysis of multiple proxies shows that eastern equatorial Atlantic upwelling was subdued during isotope stage 5.5, more intense during stages 4, 5.2, 5.4, and 6, and most intense early in stage 2. These findings are based on proxy measures from a core site about 600 km southwest of Liberia. The proxies include total organic carbon content, the ratio of peridinoid and oceanic organic-walled dinoflagellate cyst species, accumulation rates of calcareous dinoflagellates, estimates of sea surface paleotemperatures, the difference in stable oxygen isotope composition between two species of planktonic foraminifera that live at different water depths, and the abundance of the planktonic foraminifera Neogloboquadrina dutertrei. Most of these parameters consistently vary directly or inversely with one another. Slight discrepancies between the individual parameters show the usefulness of a multiple proxy approach to reconstruct paleoenvironments. Our data confirm that northern summer insolation strongly influences upwelling in the eastern equatorial Atlantic Ocean.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksu, A.E., Mudie, P.J., de Vernal, A., Gillespie, H. (1992). Ocean–atmosphere responses to climatic change in the Labrador Sea: Pleistocene plankton and pollen records. Palaeogeography, Palaeoclimatology, Palaeoecology, 92, 121137.Google Scholar
Baumann, K.-H., Cepek, M., Kinkel, H.. Coccolithophores as indicators of ocean water masses, surface-water temperatures, and paleoproductivity—Examples from the South Atlantic. Fischer, G., Wefer, G. (1999). Use of Proxies in Paleoceanography: Examples from the South Atlantic. Springer-Verlag, Berlin/Heidelberg.117144.Google Scholar
Berger, W.H. (1967). Foraminiferal ooze: Solution at depths. Science, 156, 383385.CrossRefGoogle ScholarPubMed
Bonneau, M.C., Vergnaud-Grazzini, C., Berger, W.H.. Stable isotope fractionation and differential dissolution in recent planktonic foraminifera from Pacific box-cores. Oceanologica Acta, 3, (1980). 377382.Google Scholar
Boyle, E.A., Keigwin, L.D.. Deep circulation of the North Atlantic over the last 200,000 years: Geochemical evidence. Science, 218, (1982). 784787.Google Scholar
Dittert, N. (1998). Late Quaternary planktic foraminifera assemblages in the South Atlantic Ocean: Quantitative determination and preservational aspects. Berichte, Fachbereich Geowissenschaften,Universität Bremen 126, 165, pp.Google Scholar
Edwards, L.E., Anderle, V.A.S.. Distribution of selected dinoflagellate cysts in modern marine sediments. Head, M.J., Wrenn, J.H. (1992). Neogene and Quaternary Dinoflagellate Cysts and Acritarchs. American Association of Stratigraphic Palynologists Foundation, Dallas.259288.Google Scholar
Epstein, S.R., Buchsbaum, H., Lowenstam, A., Urey, H.C.. Revised carbonate–water isotopic temperature scale. Geological Society of America Bulletin, 64, (1953). 13151325.Google Scholar
Fairbanks, R.G., Sverdlove, M., Free, R., Wiebe, P.H., , A.W.H. (1982). Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature, 298, 841844.Google Scholar
Hastenrath, S., Merle, J. (1987). Annual cycle of subsurface thermal structure in the tropical Atlantic. Journal of Physical Oceanography, 17, 15181538.Google Scholar
Hemleben, C., Spindler, M., Anderson, O.R. (1989). Modern Planktonic Foraminifera. Springer-Verlag, New York.p. 363 Google Scholar
Herbland, A., Voituriez, B. (1978). Hydrological structure analysis for estimating the primary production in the tropical Atlantic Ocean. Journal of Marine Research, 37, 87101.Google Scholar
Höll, C., Zonneveld, K.A.F., Willems, H. (1998). On the ecology of calcareous dinoflagellates: The Quaternary eastern Equatorial Atlantic. Marine Micropaleontology, 33, 125.CrossRefGoogle Scholar
Höll, C., Karwath, B., Rühlemann, C., Zonneveld, K., Willems, H. (1999). Palaeoenvironmental information gained from calcareous dinoflagellates: The Late Quaternary eastern and western tropical Atlantic in comparison. Palaeogeography, Palaeoclimatology, Palaeoecology, 146, 147164.Google Scholar
Imbrie, J., Kipp, N.G.. A new micropaleontological method for quantitative paleoclimatology: Application to a late Pleistocene Caribbean core. Turekian, K.K. (1971). The Late Cenozoic Glacial Ages. Yale Univ. Press, New Haven.71181.Google Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackelton, N.J.. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. Berger, A.L., Imbrie, J., Hays, J.D., Kukla, J., Saltzman, J. (1984). Milankovitch and Climate, Part 1. Reidel, Dordrecht.269305.Google Scholar
Jones, J.I. (1967). Significance of distribution of planktonic foraminifera in the Equatorial Atlantic Undercurrent. Micropaleontology, 13, 489501.Google Scholar
S., Kemle-von Mücke (1994). Oberflächenwasserstruktur und -zirkulation des Südostatlantiks im Spätquartär. Berichte, Fachbereich Geowissenschaften,Universität Bremen 55, 151, pp.Google Scholar
Kemle-von Mücke, S., Oberhänsli, H.. The distribution of living planktonic foraminifera in relation to southeast Atlantic oceanography. Fischer, G., Wefer, G. (1999). The Use of Proxies in Paleoceanography. Examples from the South Atlantic. Springer-Verlag, Berlin/Heidelberg.91115.Google Scholar
Kemle-von Mücke, S., Hemleben, C.. Foraminifera. Boltovskoy, D. (1999). South Atlantic Zooplankton, Vol. 1. Backhuys, Leiden.4373.Google Scholar
Levitus, S. (1982). Climatological atlas of the world ocean. NOAA Professional Paper 13,173, pp.Google Scholar
Lewis, J., Dodge, J.D., Powell, A.J.. Quaternary dinoflagellate cysts from the upwelling system offshore Peru, Hole 686B, ODP LEG 112. Suess, E., von Huene, R. (1990). Proceedings of the Ocean Drilling Program, Scientific Results. 323327.Google Scholar
Lyle, M. (1988). Climatically forced organic carbon burial in equatorial Atlantic and Pacific Oceans. Nature, 335, 529532.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., Shackleton, N.J. (1987). Age dating and the orbitol theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research, 27, 129.Google Scholar
McIntyre, A., Ruddiman, W.F., Karlin, K., Mix, A.C. (1989). Surface water response of the equatorial Atlantic Ocean to orbital forcing. Paleoceanography, 4, 1955.CrossRefGoogle Scholar
Meinecke, G. (1992). Spätquartäre Oberflächenwassertemperaturen im Östlichen Äquatorialen Atlantik. Berichte, Fachbereich Geowissenschaften,Universität Bremen 29, 181, pp.Google Scholar
Mix, A.C., Morey, A.E.. Climate feedback and Pleistocene variations in the Atlantic South Equatorial Current. Berger, W.H., Wefer, G., Siedler, G., Webb, D.J. (1996). The South Atlantic: Present and Past Circulation. Springer-Verlag, Berlin/Heidelberg.503525.Google Scholar
Peterson, R.G., Stramma, L. (1991). Upper-level circulation in the South Atlantic Ocean. Progress in Oceanography, 26, 173.CrossRefGoogle Scholar
Pflaumann, U., Duprat, J., Pujol, C., Labeyrie, L.D. (1996). SIMMAX: A modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments. Paleoceanography, 11, 1535.Google Scholar
Philander, S.G.H., Pacanowsi, R.C. (1986). A model of the seasonal cycle in the tropical Atlantic Ocean. Journal of Geophysical Research, 91, 14,19214,206.Google Scholar
Prell, W.L., Kutzbach, J.E. (1987). Monsoon variability over the past 150,000 years. Journal of Geophysical Research, 92, 84118425.Google Scholar
Ravelo, A.C., Fairbanks, R.G., Philander, S.G.H. (1990). Reconstructing tropical Atlantic hydrography using planktonic foraminifera and an ocean model. Paleoceanography, 5, 409431.Google Scholar
Ravelo, A.C., Fairbanks, R.G. (1992). Oxygen isotopic composition of multiple species of planktonic foraminifera: Records of the modern photic zone temperature gradient. Paleoceanography, 7, 815831.Google Scholar
Shackleton, N.J., Hall, M.A., Line, J., Shuxi, C. (1983). Carbon isotope data in core V19-30 confirm reduced carbon dioxide concentration in the ice age atmosphere. Nature, 306, 319322.Google Scholar
Van Leeuwen, R.J.W. (1989). Sea-floor distribution and Late Quaternary faunal patterns of planktonic and benthic foraminifera in the Angola Basin. Utrecht Micropaleontological Bulletin, 38.Google Scholar
Vink, A., Zonneveld, K.A.F., Willems, H. (2000). Distributions of calcareous dinoflagellate cysts in surface sediments of the western equatorial Atlantic Ocean, and their potential use in paleoceanography. Marine Micropaleontology, 38, 149180.Google Scholar
Wall, D., Dale, B., Lohmann, G.P., Smith, W.K. (1977). The environmental and climatic distribution of dinoflagellate cysts in modern marine sediments from regions in the North and South Atlantic oceans and adjacent seas. Marine Micropaleontology, 2, 121200.Google Scholar
G,, Weferand Cruise participants, (1989). Bericht über die Meteor-Fahrt M 9–4, Dakar–Santa Cruz, 19.2.1989-16.3.1989. Berichte, Fachbereich Geowissenschaften,Universität Bremen 7, 103, pp.Google Scholar
Wefer, G., Berger, W.H., Bickert, T., Donner, B., Fischer, G., Kemle-von Mücke, S., Meinecke, G., Müller, P.J., Mulitza, S., Niebler, H.-S., Pätzold, J., Schmidt, H., Schneider, R.R., Segl, M.. Late Quaternary surface circulation of the South Atlantic: The stable isotope record and implications for heat transport and productivity. Wefer, G., Berger, W.H., Siedler, G., Webb, D.J. (1996). The South Atlantic: Present and Past Circulation. Springer-Verlag, Berlin/Heidelberg.461502.Google Scholar
Wolff, T., Mulitza, S., Rühlemann, C., Wefer, G. (1999). Response of the tropical Atlantic thermocline to the Late Quaternary trade wind changes. Paleoceanography, 14, 374383.Google Scholar
Zonneveld, K. A. F.,Bruhne, A. Willems, H. in press,. Spatial distribution of calcareous dinoflagellate cysts in surface sediments of the South Atlantic Ocean in relation to environmental gradients in the surface water layers. Review of Palaeobotany and Palynology.Google Scholar