Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T17:08:42.860Z Has data issue: false hasContentIssue false

Late Quaternary sea-level history and the antiquity of mammoths (Mammuthus exilis and Mammuthus columbi), Channel Islands National Park, California, USA

Published online by Cambridge University Press:  20 January 2017

Daniel R. Muhs*
Affiliation:
U.S. Geological Survey, MS 980, Box 25046, Federal Center, Denver, CO 80225, USA
Kathleen R. Simmons
Affiliation:
U.S. Geological Survey, MS 980, Box 25046, Federal Center, Denver, CO 80225, USA
Lindsey T. Groves
Affiliation:
Section of Malacology, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007, USA
John P. McGeehin
Affiliation:
U.S. Geological Survey, MS 926A, National Center, Reston, VA 20192, USA
R. Randall Schumann
Affiliation:
U.S. Geological Survey, MS 980, Box 25046, Federal Center, Denver, CO 80225, USA
Larry D. Agenbroad
Affiliation:
Mammoth Site of Hot Springs, South Dakota, Inc., 1800 Highway 18 Truck Route, P.O. Box 692, Hot Springs, SD 57747, USA
*
*Corresponding author. E-mail address:[email protected] (D.R. Muhs). Ĵ Deceased October 31, 2014.

Abstract

Fossils of Columbian mammoths (Mammuthus columbi) and pygmy mammoths (Mammuthus exilis) have been reported from Channel Islands National Park, California. Most date to the last glacial period (Marine Isotope Stage [MIS] 2), but a tusk of M. exilis (or immature M. columbi) was found in the lowest marine terrace of Santa Rosa Island. Uranium-series dating of corals yielded ages from 83.8 ± 0.6 ka to 78.6 ± 0.5 ka, correlating the terrace with MIS 5.1, a time of relatively high sea level. Mammoths likely immigrated to the islands by swimming during the glacial periods MIS 6 (~ 150 ka) or MIS 8 (~ 250 ka), when sea level was low and the island–mainland distance was minimal, as during MIS 2. Earliest mammoth immigration to the islands likely occurred late enough in the Quaternary that uplift of the islands and the mainland decreased the swimming distance to a range that could be accomplished by mammoths. Results challenge the hypothesis that climate change, vegetation change, and decreased land area from sea-level rise were the causes of mammoth extinction at the Pleistocene/Holocene boundary on the Channel Islands. Pre-MIS 2 mammoth populations would have experienced similar or even more dramatic changes at the MIS 6/5.5 transition.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

† Deceased October 31, 2014.

References

Addicott, W.O. (1964). Pleistocene invertebrates from the Dume terrace, western Santa Monica Mountains, California. Bulletin of the Southern California Academy of Sciences 63, 141150.Google Scholar
Agenbroad, L. (1984). New World mammoth distribution. Martin, P., Klein, R. Quaternary Extinctions: the Search for a Cause University of Arizona Press, Tucson.90108.Google Scholar
Agenbroad, L.D. (1998). New pygmy mammoth (Mammuthus exilis) localities and radiocarbon dates from San Miguel, Santa Rosa, and Santa Cruz Islands, California. Weigand, P. Contributions to the Geology of the Northern Channel Islands, Southern California Pacific Section American Association of Petroleum Geologists, Bakersfield, California.169175.Google Scholar
Agenbroad, L.D. (2001). Channel Islands (USA) pygmy mammoths (Mammuthus exilis) compared and contrasted with M. columbi, their continental ancestral stock. Cavarretta, G., Giolia, F., Mussi, M., Palombo, M.R. La Terra degli Elefanti/The World of Elephants. Proceedings of the 1st International Congress Consiglio Nazionale delle Ricerche, Roma.473475.Google Scholar
Agenbroad, L.D. (2003). New absolute dates and comparisons for California's Mammuthus exilis . Deinsea 9, 116.Google Scholar
Agenbroad, L.D. (2005). North American proboscideans: Mammoths: the state of knowledge, 2003. Quaternary International 126–128, 7392.CrossRefGoogle Scholar
Agenbroad, L.D. (2012). Giants and pygmies: mammoths of Santa Rosa Island, California (USA). Quaternary International 255, 28.Google Scholar
Agenbroad, L.D., Morris, D., Roth, L. (1999). Pygmy mammoths Mammuthus exilis from Channel Islands National Park, California (USA). Deinsea 6, 89102.Google Scholar
Agenbroad, L.D., Johnson, J.R., Morris, D., Stafford, T.W. Jr. (2005). Mammoths and humans as late Pleistocene contemporaries on Santa Rosa Island. Garcelon, D.K., Schwemm, C.A. Proceedings of the Sixth California Islands Symposium Institute for Wildlife Studies, Arcata, California.37.Google Scholar
Azzaroli, A. (1981). About pigmy [sic] mammoths of the northern Channel Islands and other island faunas. Quaternary Research 16, 423425.Google Scholar
Bard, E., Hamelin, B., Fairbanks, R.G. (1990). U–Th ages obtained by mass spectrometry in corals from Barbados: Sea level during the past 130,000 years. Nature 346, 456458.Google Scholar
Barnosky, A.D., Koch, P.L., Feranec, R.S., Wing, S.L., Shabel, A.B. (2004). Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 7075.CrossRefGoogle ScholarPubMed
Berger, R. (1980). Early man on Santa Rosa Island. Power, D.M. The California Islands: Proceedings of Multidisciplinary Symposium Santa Barbara Museum of Natural History, Santa Barbara, California.7378.Google Scholar
Berger, R., Orr, P.C. (1966). The fire areas on Santa Rosa Island, II. Proceedings of the National Academy of Sciences 56, 16781682.Google Scholar
Cheng, H., Edwards, R.L., Shen, C.-C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., Alexander, E.C. Jr. (2013). Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371–372, 8291.Google Scholar
Clark, J., Mitrovica, J.X., Alder, J. (2014). Coastal paleogeography of the California–Oregon–Washington and Bering Sea continental shelves during the latest Pleistocene and Holocene: implications for the archaeological record. Journal of Archaeological Science 52, 1223.Google Scholar
Cushing, J., Daily, M., Noble, E., Roth, V.L., Wenner, A. (1984). Fossil mammoths from Santa Cruz Island, California. Quaternary Research 21, 376384.Google Scholar
Cutler, K.B., Edwards, R.L., Taylor, F.W., Cheng, H., Adkins, A., Gallup, C.D., Cutler, P.M., Burr, G.S., Bloom, A.L. (2003). Rapid sea-level fall and deep-ocean temperature change since the last interglacial period. Earth and Planetary Science Letters 206, 253271.Google Scholar
Daulton, T.L., Pinter, N., Scott, A.C. (2010). No evidence of nanodiamonds in Younger-Dryas sediments to support an impact event. Proceedings of the National Academy of Sciences 107, 1604316047.Google Scholar
Delanghe, D., Bard, E., Hamelin, B. (2002). New TIMS constraints on the uranium-238 and uranium-234 in seawaters from the main ocean basins and the Mediterranean Sea. Marine Chemistry 80, 7993.Google Scholar
Dutton, A., Lambeck, K. (2012). Ice volume and sea level during the last interglacial. Science 337, 216219.CrossRefGoogle ScholarPubMed
Edwards, R.L., Gallup, C.D., Cheng, H. (2003). Uranium-series dating of marine and lacustrine carbonates. Reviews in Mineralogy and Geochemistry 52, 363405.Google Scholar
Fairbanks, R.G. (1989). A 17,000-year glacio-eustatic sea level record: influence of glacial melting on the Younger Dryas event and deep-ocean circulation. Nature 342, 637642.Google Scholar
Firestone, R.B., West, A., Kennett, J.P., Becker, L., Bunch, T.E., Revay, Z.S., Schultz, P.H., Belgya, T., Kennett, D.J., Erlandson, J.M., Dickenson, O.J., Goodyear, A.A., Harris, R.S., Howard, G.A., Kloosterman, J.B., Lechler, P., Mayewski, P.A., Montgomery, J., Poreda, R., Darrah, T., Que Hee, S.S., Smith, A.R., Stich, A., Topping, W., Wittke, J.H., Wolbach, W.S. (2007). Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and Younger Dryas cooling. Proceedings of the National Academy of Sciences 104, 1601616021.Google Scholar
Flint, R.F. (1971). Glacial and Quaternary Geology. John Wiley and Sons, Inc., New York.(892 pp.).Google Scholar
Gallup, C.D., Edwards, R.L., Johnson, R.G. (1994). The timing of high sea levels over the past 200,000 years. Science 263, 796800.Google Scholar
Graham, R.W., Lundelius, E.L. Jr. (1984). Coevolutionary disequilibrium and Pleistocene extinctions. Martin, P.S., Klein, R.G. Quaternary Extinctions: a Prehistoric Revolution University of Arizona Press, Tucson.211222.Google Scholar
Grant, L.B., Mueller, K.J., Gath, E.M., Cheng, H., Edwards, R.L., Munro, R., Kennedy, G.L. (1999). Late Quaternary uplift and earthquake potential of the San Joaquin Hills, southern Los Angeles Basin, California. Geology 27, 10311034.Google Scholar
Grayson, D.K., Meltzer, D.J. (2002). Clovis hunting and large mammal extinction: a critical review of the evidence. Journal of World Prehistory 16, 313359.Google Scholar
Grayson, D.K., Meltzer, D.J. (2003). A requiem for North American overkill. Journal of Archaeological Science 30, 585593.Google Scholar
Gurrola, L.D., Keller, E.A., Chen, J.H., Owen, L.A., Spencer, J.Q. (2014). Tectonic geomorphology of marine terraces: Santa Barbara fold belt, California. Geological Society of America Bulletin 126, 219233.Google Scholar
Guthrie, R.D. (2004). Radiocarbon evidence of mid-Holocene mammoths stranded on an Alaskan Bering Sea island. Nature 429, 746749.Google Scholar
Haynes, G. (2013). Extinctions in North America's late glacial landscapes. Quaternary International 285, 8998.Google Scholar
Herridge, V.L., Lister, A.M. (2012). Extreme insular dwarfism evolved in a mammoth. Proceedings of the Royal Society B 10.1098/rspb.2012.0671.Google Scholar
Heusser, L.E. (1995). Pollen stratigraphy and paleoecologic interpretation of the 160- k.y. record from Santa Barbara Basin, Hole 893A. Kennett, J.P., Baldauf, J.G., Lyle, M. Proceedings of the Ocean Drilling Program Scientific Results.vol. 146, pt. 2, 265279.Google Scholar
Heusser, L.E. (2000). Rapid oscillations in western North America vegetation and climate during oxygen isotope stage 5 inferred from pollen data from Santa Barbara Basin (Hole 893A). Palaeogeography, Palaeoclimatology, Palaeoecology 161, 407421.Google Scholar
Holliday, V.T., Surovell, T., Meltzer, D.J., Grayson, D.K., Boslough, M. (2014). The Younger Dryas impact hypothesis: a cosmic catastrophe. Journal of Quaternary Science 29, 515530.Google Scholar
Howarth, R.J., McArthur, J.M. (1997). Statistics for strontium isotope stratigraphy: a robust LOWESS fit to the marine Sr-isotope curve for 0 to 206 Ma, with look-up table for derivation of numeric age. Journal of Geology 105, 441456.Google Scholar
Johnson, D.L. (1978). The origin of island mammoths and the Quaternary land bridge history of the northern Channel Islands, California. Quaternary Research 10, 204225.Google Scholar
Johnson, D.L. (1979). Geology, soils, and erosion. Power, D.M. Natural Resources Study of the Channel Islands National Monument, California Santa Barbara Museum of Natural History, Santa Barbara, California.3.13.73.Google Scholar
Johnson, D.L. (1980). Problems in the land vertebrate zoogeography of certain islands and the swimming powers of elephants. Journal of Biogeography 7, 383398.Google Scholar
Johnson, D.L. (1981). More comments on the northern Channel Islands mammoths. Quaternary Research 15, 105106.Google Scholar
Junger, A., Johnson, D.L. (1980). Was there a Quaternary land bridge to the northern Channel Islands?. Power, D.M. The California Islands: Proceedings of Multidisciplinary Symposium Santa Barbara Museum of Natural History, Santa Barbara, California.3339.Google Scholar
Kanakoff, G.P., Emerson, W.K. (1959). Late Pleistocene invertebrates of the Newport Bay Area, California. Los Angeles County Museum Contributions in Science, no. 31, (47 pp.).Google Scholar
Kaufman, A., Broecker, W.S., Ku, T.-L., Thurber, D.L. (1971). The status of U-series methods of mollusk dating. Geochimica et Cosmochimica Acta 35, 11151183.Google Scholar
Kennedy, G.L., Lajoie, K.R., Wehmiller, J.F. (1982). Aminostratigraphy and faunal correlations of late Quaternary marine terraces, Pacific Coast, USA. Nature 299, 545547.Google Scholar
Kennedy, G.L., Wehmiller, J.F., Rockwell, T.K. (1992). Paleoecology and paleozoogeography of late Pleistocene marine-terrace faunas of southwestern Santa Barbara County, California. Fletcher III, C.H., Wehmiller, J.F. Quaternary Coasts of the United States: Marine and Lacustrine Systems SEPM (Society for Sedimentary Geology) Special Publication. no. 48, 343361.Google Scholar
Kennett, D.J., Kennett, J.P., West, G.J., Erlandson, J.M., Johnson, J.R., Hendy, I.L., West, A., Culleton, B.J., Jones, T.L., Stafford, T.W. Jr. (2008). Wildfire and abrupt ecosystem disruption on California's northern Channel Islands at the Ållerød–Younger Dryas boundary (13.0–12.9 ka). Quaternary Science Reviews 27, 25302545.Google Scholar
Kennett, D.J., Kennett, J.P., West, A., West, G.J., Bunch, T.E., Culleton, B.J., Erlandson, J.M., Que Hee, S.S., Johnson, J.R., Mercer, C., Shen, F., Sellers, M., Stafford, T.W. Jr., Stich, A., Weaver, J.C., Wittke, J.H., Wolbach, W.S. (2009). Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments. Proceedings of the National Academy of Sciences 106, 1262312628.Google Scholar
Kennett, J.P. (1995). Latest Quaternary benthic oxygen and carbon isotope stratigraphy: hole 893A. Kennett, J.P., Baldauf, J.G., Lyles, M. Proceedings of the Ocean Drilling Program. Scientific Results vol. 146. Part 2 Santa Barbara Basin, California.318.Google Scholar
Kennett, J.P., Venz, K. (1995). Late Quaternary climatically related planktonic foraminiferal assemblage changes: Hole 893A, Santa Barbara Basin, California. Kennett, J.P., Baldauf, J.G., Lyles, M. Proceedings of the Ocean Drilling Program, Scientific Results vol. 146, Part 2, 281293.Google Scholar
Kern, J.P. (1977). Origin and history of upper Pleistocene marine terraces, San Diego, California. Geological Society of America Bulletin 88, 15531566.Google Scholar
Kuzmin, Y.V., Orlova, L.A., Zolnikov, I.D. (2003). Dynamics of the mammoth (Mammuthus primigenius) population in northern Asia: radiocarbon evidence. Deinsea 9, 221237.Google Scholar
Lea, D.W., Martin, P.A., Pak, D.K., Spero, H.J. (2002). Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core. Quaternary Science Reviews 21, 283293.Google Scholar
Lipps, J.E., Valentine, J.W., Mitchell, E. (1968). Pleistocene paleoecology and biostratigraphy, Santa Barbara Island, California. Journal of Paleontology 42, 291307.Google Scholar
Liscaljet, N. (2012). Napakaliit trompa: new pygmy proboscidean remains from the Cagayan Valley (Phillipines). Quaternary International 276–277, 278286.Google Scholar
Lister, A., Bahn, P. (2007). Mammoths: Giants of the Ice Age. University of California Press, Berkeley.(192 pp.).Google Scholar
Ludwig, K.R. (2001). Users manual for Isoplot/Ex, rev. 2.49. Special Publication No. 1a, Berkeley Geochronology Center, Berkeley, California.(55 pp.).Google Scholar
Ludwig, K.R., Simmons, K.R., Szabo, B.J., Winograd, I.J., Landwehr, J.M., Riggs, A.C., Hoffman, R.J. (1992). Mass-spectrometric 230Th–234U–238U dating of the Devils Hole calcite vein. Science 258, 284287.Google Scholar
Madden, C.T. (1981). Origin(s) of mammoths from northern Channel Islands, California. Quaternary Research 15, 101104.Google Scholar
Maglio, V.T. (1973). Origin and evolution of the Elephantidae. Transactions of the American Philosophical Society, New Series 63, 1149.Google Scholar
Martin, P.S. (1967). Prehistoric overkill. Martin, P.S., Wright, H.E. Jr. Pleistocene Extinctions: the Search for a Cause Yale University Press, New Haven.75120.Google Scholar
Martin, P.S. (1984). Prehistoric overkill: the global model. Martin, P.S., Klein, R.J. Pleistocene Extinctions: a Prehistoric Revolution University of Arizona Press, Tucson.354403.Google Scholar
Martin, P.S. (2005). Twilight of the Mammoths: Ice Age Extinctions and the Rewilding of America. University of California Press, Berkeley.(250 pp.).Google Scholar
Martin, P.S., Steadman, D.W. (1999). Prehistoric extinctions on islands and continents. MacPhee, R.D.E. Extinctions in Near Time, Causes, Contexts, and Consequences Kluwer Academic/Plenum Publishers, New York.1755.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. Jr., Shackleton, N.J. (1987). Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27, 129.Google Scholar
McDaniel, G.E. Jr., Jefferson, G.T. (2006). Mammoths in our midst: the proboscideans of Anza-Borrego Desert State Park®, southern California, USA. Quaternary International 142–143, 124129.Google Scholar
Meltzer, D.J., Holliday, V.T., Cannon, M.D., Miller, D.S. (2014). Chronological evidence fails to support claim of an isochronous widespread layer of cosmic impact indicators dated to 12,800 years ago. Proceedings of the National Academy of Sciences 111, E2162E2171.Google Scholar
Metcalfe, J.Z., Longstaffe, F.J., Ballenger, J.A.M., Haynes, C.V. Jr. (2011). Isotopic paleoecology of Clovis mammoths from Arizona. Proceedings of the National Academy of Sciences 108, 1791617920.Google Scholar
Muhs, D.R., Miller, G.H., Whelan, J.F., Kennedy, G.L. (1992). Aminostratigraphy and oxygen isotope stratigraphy of marine-terrace deposits, Palos Verdes Hills and San Pedro areas, Los Angeles County, California. Fletcher III, C.H., Wehmiller, J.F. Quaternary Coasts of the United States: Marine and Lacustrine Systems SEPM (Society for Sedimentary Geology) Special Publication. no. 48, 363376.Google Scholar
Muhs, D.R., Simmons, K.R., Kennedy, G.L., Rockwell, T.K. (2002a). The last interglacial period on the Pacific Coast of North America: timing and paleoclimate. Geological Society of America Bulletin 114, 569592.Google Scholar
Muhs, D.R., Simmons, K.R., Steinke, B. (2002b). Timing and warmth of the last interglacial period: new U-series evidence from Hawaii and Bermuda and a new fossil compilation for North America. Quaternary Science Reviews 21, 13551383.Google Scholar
Muhs, D.R., Simmons, K.R., Kennedy, G.L., Ludwig, K.R., Groves, L.T. (2006). A cool eastern Pacific Ocean at the close of the last interglacial complex. Quaternary Science Reviews 25, 235262.CrossRefGoogle Scholar
Muhs, D.R., Simmons, K.R., Schumann, R.R., Groves, L.T., DeVogel, S., Patterson, D., Richards, D.V. (2010). Last interglacial sea-level history on Santa Barbara and Anacapa Islands, Channel Islands National Park, California. Geological Society of America Abstracts with Programs 42, 5 563.Google Scholar
Muhs, D.R., Simmons, K.R., Schumann, R.R., Halley, R.B. (2011). Sea-level history of the past two interglacial periods: new evidence from U-series dating of reef corals from south Florida. Quaternary Science Reviews 30, 570590.Google Scholar
Muhs, D.R., Simmons, K.R., Schumann, R.R., Groves, L.T., Mitrovica, J.X., Laurel, D. (2012). Sea-level history during the last interglacial complex on San Nicolas Island, California: implications for glacial isostatic adjustment processes, paleozoogeography and tectonics. Quaternary Science Reviews 37, 125.Google Scholar
Muhs, D.R., Simmons, K.R., Schumann, R.R., Groves, L.T., DeVogel, S.B., Minor, S.A., Laurel, D. (2014a). Coastal tectonics on the eastern margin of the Pacific Rim: Late Quaternary sea-level history and uplift rates, Channel Islands National Park, California, USA. Quaternary Science Reviews 105, 209238.Google Scholar
Muhs, D.R., Groves, L.T., Schumann, R.R. (2014b). Interpreting the paleozoogeography and sea level history of thermally anomalous marine terrace faunas: a case study from the last interglacial complex of San Clemente Island, California. Monographs of the Western North American Naturalist 7, 82108.Google Scholar
Orr, P.C. (1960). Late Pleistocene marine terraces on Santa Rosa Island, California. Geological Society of America Bulletin 71, 11131120.Google Scholar
Orr, P.C. (1967). Geochronology of Santa Rosa Island, California. Philbrick, R.N. Proceedings of the Symposium on the Biology of the California Islands Santa Barbara Botanic Garden, Santa Barbara, California.317325.Google Scholar
Orr, P.C. (1968). Prehistory of Santa Rosa Island. Santa Barbara Museum of Natural History, Santa Barbara, California.Google Scholar
Orr, P.C., Berger, R. (1966). The fire areas on Santa Rosa Island, California. Proceedings of the National Academy of Sciences 56, 14091416.Google Scholar
Palombo, M.R. (2001). Endemic elephants of the Mediterranean Islands: knowledge, problems and perspective. Cavarretta, G., Giolia, F., Mussi, M., Palombo, M.R. La Terra degli Elefanti/The World of Elephants. Proceedings of the 1st International Congress Consiglio Nazionale delle Ricerche, Roma.486491.Google Scholar
Palombo, M.R. (2007). How can endemic proboscideans help us understand the “island rule”? A case study of Mediterranean islands. Quaternary International 169–170, 105124.Google Scholar
Palombo, M.R., Rozzi, R. (2013). Dwarfing and gigantism in Quaternary vertebrates. Elias, S., Mock, C. Encyclopedia of Quaternary Sciences Elsevier, Amsterdam.733747.Google Scholar
Peltier, W.R., Fairbanks, R.G. (2006). Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, 33223337.Google Scholar
Pigati, J.S., Quade, J., Wilson, J., Jull, A.J.T., Lifton, N.A. (2007). Development of low-background vacuum extraction and graphitization systems for 14C dating of old (40–60 ka) samples. Quaternary International 166, 414.Google Scholar
Pigati, J.S., Rech, J.A., Nekola, J.C. (2010). Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5, 519532.Google Scholar
Pigati, J.S., McGeehin, J.P., Muhs, D.R., Bettis III, E.A. (2013). Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells. Quaternary Science Reviews 76, 114128.Google Scholar
Pigati, J.S., McGeehin, J.P., Skipp, G.L., Muhs, D.R. (2014). Evidence of repeated wildfires prior to human occupation on San Nicolas Island, California. Monographs of the Western North American Naturalist 7, 3547.Google Scholar
Pinter, N., Lueddecke, S.B., Keller, E.A., Simmons, K.R. (1998). Late Quaternary slip on the Santa Cruz Island fault, California. Geological Society of America Bulletin 110, 711722.Google Scholar
Pinter, N., Scott, A.C., Daulton, T.L., Podoll, A., Koeberl, C., Anderson, R.S., Ishman, S.E. (2011). The Younger Dryas impact hypothesis: a requiem. Earth-Science Reviews 106, 247264.Google Scholar
Potter, E.-K., Lambeck, K. (2003). Reconciliation of sea-level observations in the Western North Atlantic during the last glacial cycle. Earth and Planetary Science Letters 217, 171181.Google Scholar
Potter, E.-K., Esat, T.M., Schellmann, G., Radtke, U., Lambeck, K., McCulloch, M.T. (2004). Suborbital-period sea-level oscillations during marine isotope substages 5a and 5c. Earth and Planetary Science Letters 225, 191204.Google Scholar
Poulakakis, N., Parmakelis, A., Lymberakis, P., Mylonas, M., Zouros, E., Reese, D.S., Glaberman, S., Caccone, A. (2006). Ancient DNA forces reconsideration of evolutionary history of Mediterranean pygmy elephantids. Biology Letters 2, 451454.Google Scholar
Reeder-Myers, L., Erlandson, J.M., Muhs, D.R., Rick, T.C. (2015). Sea level, paleogeography, and archeology on California's Northern Channel Islands. Quaternary Research 83, 263272.Google Scholar
Reimer, P., Bard, E., Bayliss, A., Beck, J., Blackwell, P., Ramsey, C.B., Grootes, P., Guilderson, T., Haflidason, I., Hajdas, I. (2013). IntCal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Rick, T.C., Wah, J.S., Erlandson, J.M. (2012a). Re-evaluating the origins of late Pleistocene fire areas on Santa Rosa Island, California, USA. Quaternary Research 78, 353362.Google Scholar
Rick, T.C., Hofman, C.A., Braje, T.J., Maldonado, J.E., Sillett, T.S., Danchisko, K., Erlandson, J.M. (2012b). Flightless ducks, giant mice and pygmy mammoths: Late Quaternary extinctions on California's Channel Islands. World Archaeology 44, 320.Google Scholar
Rohling, E.J., Grant, K., Bolshaw, M., Roberts, A.P., Siddall, M., Hemleben, Ch., Kucera, M. (2009). Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nature Geoscience 2, 500504.CrossRefGoogle Scholar
Rohling, E.J., Braun, K., Grant, K., Kucera, M., Roberts, A.P., Siddall, M., Trommer, G. (2010). Comparison between Holocene and Marine Isotope Stage-11 sea-level histories. Earth and Planetary Science Letters 291, 97105.Google Scholar
Roth, V.L. (1993). Dwarfism and variability in the Santa Rosa Island mammoth (Mammuthus exilis): an interspecific comparion of limb-bone sizes and shapes in elephants. Hochberg, F.G. Third California Islands Symposium: Recent Advances in Research on the California Islands Santa Barbara Museum of Natural History, Santa Barbara, California.433442.Google Scholar
Sandom, C., Faurby, S., Sandel, B., Svenning, J.-C. (2014). Global late Quaternary megafauna extinctions linked to humans, not climate change. Proceedings of the Royal Society B 281, (20133254. http://dx.doi.org/10.1098/rspb.2013.3254).Google Scholar
Sarna-Wojcicki, A.M., Lajoie, K.R., Yerkes, R.F. (1987). Recurrent Holocene displacement on the Javon Canyon fault—a comparison of fault-movement history with calculated recurrence intervals. U.S. Geological Survey Professional Paper 1339, 125135.(Chapter 8).Google Scholar
Schellmann, G., Radtke, U. (2004). A revised morpho- and chronostratigraphy of the Late and Middle Pleistocene coral reef terraces on southern Barbados (West Indies). Earth-Science Reviews 64, 157187.Google Scholar
Schwarcz, H.P., Blackwell, B.A. (1992). Archaeological applications. Ivanovich, M., Harmon, R.S. Uranium-series Disequilibrium: Applications to Earth, Marine and Environmental Sciences 2nd editionClarendon Press, Oxford.511552.Google Scholar
Stuiver, M., Reimer, P.J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.Google Scholar
Takahashi, K., Chang, C.H., Cheng, Y.N. (2001). Proboscidean fossils from the Japanese Archipelago and Taiwan islands and their relationship with the Chinese mainland. Cavarretta, G., Giolia, F., Mussi, M., Palombo, M.R. La Terra degli Elefanti/The World of Elephants. Proceedings of the 1st International Congress Consiglio Nazionale delle Ricerche, Roma.148151.Google Scholar
Thompson, W.G., Spiegelman, M.W., Goldstein, S.L., Speed, R.C. (2003). An open-system model for U-series age determinations of fossil corals. Earth and Planetary Science Letters 210, 365381.Google Scholar
Tikhonov, A., Agenbroad, L., Vartanyan, S. (2003). Comparative analysis of the mammoth populations on Wrangel Island and the Channel Islands. Deinsea 9, 415420.Google Scholar
Toscano, M.A., Lundberg, J. (1999). Submerged Late Pleistocene reefs on the tectonically-stable S.E. Florida margin: high-precision geochronology, stratigraphy, resolution of Substage 5a sea-level elevation, and orbital forcing. Quaternary Science Reviews 18, 753767.Google Scholar
Valentine, J.W. (1962). Pleistocene molluscan notes. 4. Older terrace faunas from Palos Verdes Hills, California. Journal of Geology 70, 92101.Google Scholar
Valentine, J.W., Lipps, J.H. (1967). Late Cenozoic history of the southern California Islands. Philbrick, R.N. Proceedings of the Symposium on the Biology of the California Islands Santa Barbara Botanic Garden, Santa Barbara, California.2135.Google Scholar
Vartanyan, S.L., Arslanov, K.A., Karhu, J.A., Possnert, G., Sulerzhitsky, L.D. (2008). Collection of radiocarbon dates on the mammoths (Mammuthus primigenius) and other genera of Wrangel Island, northeast Siberia, Russia. Quaternary Research 70, 5159.Google Scholar
Vedder, J.G., Norris, R.M. (1963). Geology of San Nicolas Island California. U.S. Geological Survey Professional Paper 369, 165.Google Scholar
Veltre, D.W., Yesner, D.R., Crossen, K.J., Graham, R.W., Coltrain, J.B. (2008). Patterns of faunal extinction and paleoclimatic change from mid-Holocene mammoth and polar bear remains, Pribilof Islands, Alaska. Quaternary Research 70, 4050.Google Scholar
Weaver, D.W. , Doerner, D.P. , Nolf, B. (1969). Geology of the Northern Channel Islands. American Association of Petroleum Geologists and Society of Economic Paleontologists and Mineralogists. Pacific Sections, Special Publication, 200 pp., 3 geologic maps, scale 1:24,000.Google Scholar
Webb, S.D., Dudley, J.P. (1995). Proboscidea from the Leisey Shell Pits, Hillsborough County, Florida. Bulletin of the Florida Museum of Natural History 37, II 645660.Google Scholar
Webb, S.D., Morgan, G.S., Hulbert, R.C. Jr., Jones, D.S., MacFadden, B.J., Mueller, P.A. (1989). Geochronology of a rich early Pleistocene vertebrate fauna, Leisey Shell Pit, Tampa Bay, Florida. Quaternary Research 32, 96110.Google Scholar
Wehmiller, J.F., Simmons, K.R., Cheng, H., Edwards, R.L., Martin-McNaughton, J., York, L.L., Krantz, D.E., Shen, C.-C. (2004). Uranium-series coral ages from the US Atlantic Coastal Plain—the “80 ka problem” revisited. Quaternary International 120, 314.Google Scholar
Wendorf, M. (1982). The fire areas of Santa Rosa Island: an interpretation. North American Archaeologist 3, 173180.Google Scholar
Wenner, A.M., Johnson, D.L. (1980). Land vertebrates on the California Channel Islands: sweepstakes or bridges?. Power, D.M. The California Islands: Proceedings of Multidisciplinary Symposium Santa Barbara Museum of Natural History, Santa Barbara, California.497530.Google Scholar