Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T21:26:38.008Z Has data issue: false hasContentIssue false

Late Quaternary paleoenvironmental record from a sedimentary fill in Cucú Cave, Almería, SE Spain

Published online by Cambridge University Press:  20 January 2017

Antonio González-Ramón*
Affiliation:
Instituto Geológico y Minero de España, Urb. Alcázar del Genil, 4, Edif. Zulema bajo, Granada, Spain
Bartolomé Andreo
Affiliation:
Departamento de Geología, Facultad de Ciencias, Universidad de Málaga, Spain
Antonio Ruiz-Bustos
Affiliation:
Instituto Andaluz de Ciencias de la Tierra (CSIC), Facultad de Ciencias, Universidad de Granada, Spain
David A. Richards
Affiliation:
School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
José Antonio López-Sáez
Affiliation:
Grupo de Investigación Arqueobiología, Instituto de Historia, Centro de Ciencias Humanas y Sociales, C.S.I.C., Albasanz 26-28, 28037 Madrid, Spain
Francisca Alba-Sánchez
Affiliation:
Departamento de Botánica, Facultad de Ciencias, Campus Universitario de Fuente Nueva, Universidad de Granada, 18071 Granada, Spain
*
*Corresponding author. Fax: + 34 958 122990. E-mail addresses:[email protected] (A. González-Ramón), [email protected] (B. Andreo), [email protected] (A. Ruiz-Bustos), [email protected] (D.A. Richards), [email protected] (J.A. López-Sáez), [email protected] (F. Alba-Sánchez).

Abstract

Cucú cave is a small cavity, 1600 m above sea level on the southern slope of Sierra de María (Almería Province, SE Spain), where current mean annual precipitation is < 450 mm. Fossils and palynomorphs contained within a sedimentary sequence, up to 9 m in depth, allow us to consider the prevailing climatic conditions, and the timing of cavern development. The lithological sequence is dominated by clast-supported detrital material with no evidence of alluvial transport. These sediments were formed by freeze-cracking during periglacial conditions, causing further cave enlargement after initial solutional development. The clastic sequence formed during cold climates is covered by a flowstone that was deposited during a period of warmer, wetter conditions. This provides a minimum U–Th isochron age of 40.2±4.5 ka for the timing of periglacial action. Micromammal fossil species indicate a chronology between 140 and 80 ka. Paleoecological data based on the structure of the mammal community indicates that cold conditions prevailed at the time of deposit. In the studied sequence the presence of anthropogenic components has not been documented. The pollen assemblages identified are a common feature of Pleistocene cold stages that are in semi-arid regions.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreo, B. 1990, El Subbético Interno de las Sierras de María y del Maimón (provincia de Almería). . Bachelor Thesis University of Granada, pp 189.Google Scholar
Atkinson, T.C. Smart, P. Harmon, R. Waltham, A.C. 1978, Paleoclimatic and geomorphic implications of 230Th/234U dated speleothems from Britain. Nature 272, 2428.Google Scholar
Baena, J. Guzmán del Pino, J.L. 1979, Mapa geológico de España 1:50 000. . Hoja 973, Chirivel. Spanish Geological Survey (IGME).Google Scholar
Barroso, C. García Sánchez, M. Ruiz Bustos, A. Medina, P. Sanchidrian, J.L. 1983, Avance al estudio cultural, antropológico y paleontológico de la Cueva del Boquete de Zafarraya (Alcaucín, Málaga). Antropología y Paleoecología 3, 39.Google Scholar
Carrión, J.S. Munuera, M. 1997, Upper Pleistocene paleoenvironmental change in Eastern Spain: new pollen-analytical data from Cova Beneito (Alicante). Palaeogeography, Palaeoclimatology, Palaeoecology 128, 287299.Google Scholar
Carrión, J.S. Munuera, M. Navarro, C. 1998, The paleoenvironment of Carihuela Cave (Granada, Spain): a reconstruction on the basis of palynological investigations of cave sediments. Review of Palaeobotany and Palynology 99, 317340.CrossRefGoogle Scholar
Carrión, J.S. Munuera, M. Dupré, M. Andrade, A. 2001, Abrupt vegetation changes in the Segura Mountains of southern Spain throughout the Holocene. Journal of Ecology 89, 783797.Google Scholar
Carrión, J.S. Finlayson, C. Fernández, S. Finlayson, G. Allué, E. López-Sáez, J.A. López García, P. Gil-Romera, G. Bailey, G. González-Sampériz, P. 2008, A coastal reservoir of biodiversity for Upper Pleistocene human populations: paleoecological investigations in Gorham's Cave (Gibraltar) in the context of the Iberian Peninsula. Quaternary Science Reviews 27, 21182135.Google Scholar
Chen, J.H. Wasserburg, G.J. 1981, Isotopic determination of uranium in picomole and subpicomole quantities. Analytical Chemistry 53, 13 20602067.Google Scholar
Cortés-Sánchez, M. Morales-Muñiz, A. Simón-Vallejo, M.D. Bergadà-Zapata, M.M. Delgado-Huertas, A. López-García, P. López Sáez, J.A. Lozano-Francisco, M.C. Riquelme-Cantal, J.A. Roselló-Izquierdo, E. Sánchez-Marco, A. Vera-Peláez, J.L. 2008, Paleoenvironmental and cultural dynamics of the coast of Málaga (Andalusia, Spain) during the Upper Pleistocene and early Holocene. Quaternary Science Reviews 27, 21762193.Google Scholar
De Abreu, L. Shackleton, N.J. Schönfeld, J. Hall, M. Chapman, M. 2003, Millennial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods. Marine Geology 196, 120.Google Scholar
Durán, J.J. López-Martínez, J. Mancheño, M.A. 2004, Dos registros de espleotemas pleistocenos de gran potencia en la Península Ibérica: primeros resultados. Boletín Geológico y Minero 115, 2 265270.Google Scholar
Fairchild, I.J. Baker, A. Borsato, A. Frisia, S. Hinton, R.W. McDermott, F. Tooth, A.F. 2001, Annual to sub-annual resolution of multiple trace-element trends in speleothems. Journal of the Geological Society of London 158, 831841.Google Scholar
Fairchild, I.J. Smith, C.L. Baker, A. Fuller, L. Spötl, C. Mattey, D. McDermott, F. E.I.M.F., 2006, Modification and preservation of environmental signals in speleothems. Earth-Science Reviews 75, 105153.Google Scholar
Gascoyne, M. 1992, Paleoclimate determination from cave calcite deposits. Quaternary Science Reviews 11, 609632.Google Scholar
Genty, D. 2008, Paleoclimate research in Villars Cave (Dordogne, SW-France). International Journal of Speleology 37, 3 173191.CrossRefGoogle Scholar
Genty, D. Blamart, D. Ouahdi, R. Gilmour, M. Baker, A. Jouzel, J. Van-Exter, S. 2003, Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, 833837.Google Scholar
Genty, D. Combourieu Nebout, N. Hatté, C. Blamart, D. Ghaleb, B. Isabello, L. 2005, Rapid climatic changes of the last 90 kyr recorded on the European continent. Comptes Rendus Geoscience 337, 970982.Google Scholar
Girard, M. Renault-Miskovsky, J. 1969, Nouvelles techniques de préparation en palynologie apliques " tríos sédiments du Quaternaire final de l'Abri Cornille (Istres, Bouches du Rhône). Bulletin de l'Association Française pour l'Etude du Quaternaire 169, 4 275284.Google Scholar
Göksu, H.Y. Kremlin, J.H. Irwin, H.T. Frysell, R. 1974, Age determination of burned flint by a thermoluminescent method. Science 183, 651654.Google Scholar
González-Ramón, A. 2002, Consideraciones sobre el desarrollo kárstico en el Parque Natural de la Sierra de María-Los Vélez (provincia de Almería). Carrasco, F. Durán, J.J. Andreo, B. Karst and Environment. Fundación Cueva de Nerja Nerja, Málaga, Spain 337345.Google Scholar
Grimm, E.C. 1991, Tilia and Tilia. Graph, Version 2.0 and TG View Version 1.6.2. Illinois State Museum Springfield.Google Scholar
Hodge, E.J. Richards, D.A. Smart, P.L. Andreo, B. Hoffman, D.L. Mattey, D.P. González-Ramón, A. 2008, Effective precipitation in southern Spain (266 to 46 ka) based on a speleothem stable carbon isotope record. Quaternary Research 69, 447457.Google Scholar
Hoffmann, D.L. Prytulak, J. Richards, D.A. Elliot, T. Coath, C.D. Smart, P.L. Scholz, D. 2007, Procedures for accurate U and Th isotope measurements by high precision MC-ICPMS. International Journal of Mass Spectrometry 264, 97109.Google Scholar
Huang, Y. Fairchild, I.J. 2001, Partitioning of Sr2 + and Mg2 + into calcite under karst-analogue experimental conditions. Geochimica et Cosmochimica Acta 65, 4762.Google Scholar
Ludwig, K. Titterington, D.M. 1994, Calculation of 230Th/U isochrons, ages and errors. Geochimica et Cosmochimica Acta 22, 50315042.CrossRefGoogle Scholar
Luo, S. Ku, T. 1991, U-series isochron dating: a generalized method employing total-sample dissolution. Geochimica et Cosmochimica Acta 55, 2 555564.Google Scholar
Luo, X. Rehkamper, M. Lee, D.C. Halliday, A.N. 1997, High precision 230Th/232Th and 234U/238U measurements using energy-filtered ICP magnetic sector multiple collector mass spectrometry. International Journal of Mass Spectrometry and Ion Processes 171, 105117.Google Scholar
Maltrat, B. Grimalt, J.O. López-Martínez, C. Cacho, I. Sierro, F.J. Flores, J.A. Zahn, R. Canals, M. Curtis, J.H. Hodell, D.A. 2004, Abrupt temperature changes in the western Mediterranean over the past 250,000 years. Science 306, 17621765.Google Scholar
Matthews, S.L. 2009, Climatic and environmental controls on speleothem oxygen-isotope values. Quaternary Science Reviews 28, 412432.Google Scholar
Matthews, M.B. Ayalon, A. Kaufman, A. 2000, Timing and hydrological conditions of Sapropel events in the Eastern Mediterranean, as evident from speleothems, Soreq cave, Israel. Chemical Geology 169, 145156.Google Scholar
Montoya, P. Alberdi, M.T. Barbadillo, L.J. Van Der Made, J. Morales, J. Murelaga, X. Peñalver, E. Robles, F. Ruiz-Bustos, A. Sánchez, A. Sanchiz, B. Soria, D. Szyndlar, Z. 2001, Une faune très diversifiée du Pléistocène inférieur de la Sierra de Quibas (province de Murcia, Espagne). Comptes Rendus de l' Academie des Sciences Paris, Sciences de la Terre et des Planets-Earth and Planetary Sciences 332, 387393.Google Scholar
Mota, J. Valle, F. Cabello, J. 1993, Dolomitic vegetation of South Spain. Vegetatio 109, 2945.CrossRefGoogle Scholar
Navarro, C. Carrión, J.S. Navarro, J. Munuera, M. Prieto, A.R. 2000, An experimental approach to the palynology of cave deposits. Journal of Quaternary Science 15, 6 603619.Google Scholar
Navarro, C. Carrión, J.S. Munuera, M. Prieto, A.R. 2001, Cave surface pollen and the palynological potential of karstic cave sediments in paleocology. Review of Palaeobotany and Palynology 117, 245265.CrossRefGoogle Scholar
Pailler, D. Bard, E. 2002, High frequency paleoceanographic changes during the past 140000 yr recorded by the organic matter in sediments of the Iberian Margin. Palaeogeography, Palaeoclimatology, Palaeoecology 181, 431452.Google Scholar
Poulson, T.L. White, W.B. 1969, The cave environment. Science 165, 971981.Google Scholar
Ramos, J. Bernal, D. Domínguez-Bella, S. Calado, D. Ruiz, B. Gil, M.J. Clemente, I. Durán, J.J. Vijande, E. Chamorro, S. 2008, The Benzú rockshelter: a middle paleolithic site on the North African coast. Quaternary Science Reviews 27, 22102218.Google Scholar
Richards, D.A. Dorale, J.A. 2003, Uranium-series chronology and environmental applications of speleothems. Henderson, G.M. Lundstrom, C.C. Turner, S.P. Uranium-series. Geochemistry, Reviews in Mineralogy and Geochemistry 52, Geochemical Society Mineralogical Society of America Washington 407450.Google Scholar
Roberts, M.S. Smart, P. Baker, A. 1998, Annual trace element variations in a Holocene speleothem. Earth and Planetary Science Letters 154, 237246.Google Scholar
Ruiz Bustos, A. 1987, Consideraciones sobre la sistemática y evolución de la Familia Arvicolidae. El género Mimomys. Paleomammalia 1, 2 15.Google Scholar
Ruiz Bustos, A. 1988, Estudio sobre los Arvicólidos Cuaternarios. Paleomammalia 2, 1 189.Google Scholar
Ruiz Bustos, A. 2000, Estudio paleoecológico de los sedimentos con presencia del Hombre de Neandertal en la Cueva de la Carihuela (Piñar, Granada). Ayuntamiento de Piñar, Síntesis ambiental del Würm mediterráneo en la Cordillera Bética. 191Granada.Google Scholar
Ruiz Bustos, A. 2002, Características climáticas y estratigráficas de los sedimentos continentales de la Cordillera Bética durante el Plioceno, a partir de las Faunas de Mamíferos. Pliocénica 2, 4464.Google Scholar
Ruiz Bustos, A. 2007, Aportaciones de las faunas de mamíferos a la bioestratigrafía y paleoecología de la cuenca de Guadix y Baza, en La cuenca de Guadix-Baza. Sanz de Galdeano, C. Peláez, J.A. Estructura, tectónica activa, sismicidad, geomorfología y dataciones existentes. 1127Granada.Google Scholar
Ruiz Bustos, A. 2011, Escala Bioestratigráfica y Cambio Climático en la Cordillera Bética. Bubok Publishing S.L. Madrid Spain 1412.Google Scholar
Schwarcz, H.P. 1986, Geochronology and isotope geochemistry of speleothems. Fritz, P. Fontes, J.C. Handbook of Environmental Isotope Geochemistry, Vol. 2, The Terrestrial Environment. 271300.Google Scholar
Torres-Girón, M.L. Recio-Espejo, J.M. 1997, Periglacial features of the Subbetic Mountains of southern Spain (Córdoba Province). Journal of Quaternary Science 12, 4 275282.Google Scholar
Van Geel, B. 2001, Non-pollen palynomorphs. Smol, J.P. Birks, H.J.B. Last, W.M. Tracking Environmental Change Using Lake Sediments. Terrestrial, Algal and Silicaceous Indicators 3, Kluwer Academic Publishers Dordrecht 99119.Google Scholar