Published online by Cambridge University Press: 20 January 2017
Former longitudinal profiles of Beardmore Glacier, an outlet through the Transantarctic Mountains, constrain polar plateau elevations near the center of Antarctica and ice-shelf grouding in the southern Ross Embayment. Three gravel drift sheets of late Quaternary age occur alongside Beardmore Glacier. Plunket drift, the youngest, is parallel to and 7–30 m above the present ice surface. The upper limit of Beardmore drift, intermediate in age, is within 35–40 m of the present ice surface near the polar plateau but about 1100 m above the present ice surface near the glacier mouth. The upper limit of Meyer drift, the oldest, is parallel to and 30–50 m above Beardmore drift. From correlation with numerically dated drifts farther north, we assign an early Holocene age to Plunket drift, a late Wisconsin age to Beardmore drift, and an age of marine isotope Stage 6 to Meyer drift. By our age model, Beardmore Glacier was close to current elevations in its upper reaches and thickened considerably in its middle and lower reaches during the last two global glaciations represented by Beardmore and Meyer drifts. Most likely, grounded ice in the southern Ross Embayment caused such thickening of Beardmore Glacier almost to the polar plateau. A concomitant decline in precipitation is implied by ice-cap retreat on the nearby Dominion Range and is consistent with little change of upper Beardmore Glacier. Ice-shelf grounding most likely resulted from lowered sea level and/or basal melting. Lower than present precipitation was probably caused by colder air temperatures and more-distant open water. The Plunket profile records Holocene ice-surface lowering from increased surface ablation, decreased ice flow, or grounding-line recession.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.