Article contents
Late Quaternary Environments and Biogeography in the Great Basin
Published online by Cambridge University Press: 20 January 2017
Abstract
Plant and animal remains found in packrat (Neotoma spp.) middens and cave fill from the eastern and southern Great Basin region reveal the presence of subalpine conifers and boreal mammals at relatively low elevations during the Late Wisconsin. Limber pine (Pinus flexilis) and bristlecone pine (P. longaeva) were important in the late Pleistocene plant communities throughout this region. Spruce (Picea cf. engelmannii) and common juniper (Juniperus communis) were present in some of the more northerly localities, and Douglas fir (Pseudotsuga menziesii) and white fir (Abies concolor) were present in southern and eastern localities. Single needle pinyon pine (Pinus monophylla), common across this region today, was apparently not present north of the Sheep Range of southern Nevada during the Late Wisconsin. Pikas (Ochotona cf. princeps), small boreal mammals present in only a few Great Basin mountain ranges today, were common throughout the region. Heather voles (Phenacomys cf. intermedius) have been found in two cave fill deposits in Nevada, though they are unknown in the Great Basin today. Limber and bristlecone pines are generally restricted to rocky substrates in modern subalpine habitats in the Great Basin, and this may also have been the case when these plants grew at lower elevations during the Late Wisconsin. Subalpine conifers were present on the rock outcrops sampled by the packrat middens, but shrub communities, perhaps dominated by sagebrush (Artemisia spp.), may have been present on alluvial valley-bottom substrates. Forested habitats would thus have been isolated habitat islands, as they are today. Boreal small mammals, including pikas and heather voles, were able to colonize the Great Basin mountain ranges during the late Pleistocene. We suggest that these mammals were able to survive in the intervening valley-bottoms under a cool-summer climatic regime, and that continuous forest or woodland corridors were not necessary for migration.
- Type
- Research Article
- Information
- Copyright
- University of Washington
References
- 70
- Cited by