Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T18:52:32.472Z Has data issue: false hasContentIssue false

Late Quaternary Climate and Vegetation of the Sudanian Zone of Northeast Nigeria

Published online by Cambridge University Press:  20 January 2017

Ulrich Salzmann*
Affiliation:
Seminar für Vor- und Frühgeschichte, Archäologie und Archäobotanik Afrikas, J. W. Goethe-Universität, Grüneburgplatz 1, 60323 Frankfurt am Main, [email protected]
Philipp Hoelzmann
Affiliation:
Max-Planck-Institut für Biogeochemie, PO Box 100164, 07701 Jena, Germany
Irena Morczinek
Affiliation:
Seminar für Vor- und Frühgeschichte, Archäologie und Archäobotanik Afrikas, J. W. Goethe-Universität, Grüneburgplatz 1, 60323 Frankfurt am Main, [email protected]
*
1To whom correspondence should be addressed.

Abstract

The Lake Tilla crater lake in northeastern Nigeria (10°23′N, 12°08′E) provides a ca. 17,000 14C yr multiproxy record of the environmental history of a Sudanian savanna in West Africa. Evaluation of pollen, diatoms, and sedimentary geochemistry from cores suggests that dry climatic conditions prevailed throughout the late Pleistocene. Before the onset of the Holocene, the slow rise in lake levels was interrupted by a distinct dry event between ca. 10,900 and 10,500 14C yr B.P., which may coincide with the Younger Dryas episode. The onset of the Holocene is marked by an abrupt increase in lake levels and a subsequent spread of Guinean and Sudanian tree taxa into the open grass savanna that predominated throughout the Late Pleistocene. The dominance of the mountain olive Olea hochstetteri suggests cool climatic conditions prior to ca. 8600 14C yr B.P. The early to mid-Holocene humid period culminated between ca. 8500 and 7000 14C yr B.P. with the establishment of a dense Guinean savanna during high lake levels. Frequent fires were important in promoting the open character of the vegetation. The palynological and palaeolimnological data demonstrate that the humid period terminated after ca. 7000 14C yr B.P. in a gradual decline of the precipitation/evaporation ratio and was not interrupted by abrupt climatic events. The aridification trend intensified after ca. 3800 14C yr B.P. and continued until the present.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, L.J., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., and Clark, P.U. Holocene climatic instability: A prominent, widespread event 8200 years ago. Geology 25, (1997). 483 486.2.3.CO;2>CrossRefGoogle Scholar
Anhuf, D. Paleovegetation in West Africa for 18.000 B.P. and 8.500 B.P. Eiszeitalter und Gegenwart 47, (1997). 112 119.Google Scholar
Ballouche, A., and Neumann, K. A new contribution to the Holocene vegetation history of the West African Sahel: Pollen from Oursi, Burkina Faso and charcoal from three sites in northeast Nigeria. Vegetation History and Archaeobotany 4, (1995). 31 39.CrossRefGoogle Scholar
Breunig, P., Neumann, K., and Van Neer, W. New research on the Holocene settlement and environment of the Chad basin in Nigeria. African Archaeological Review 13, (1996). 111 145.CrossRefGoogle Scholar
Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37, (1995). 425 430.CrossRefGoogle Scholar
Clark, R.L. Point count estimation of charcoal in pollen preparation and thin sections of sediments. Pollen et Spores 24, (1982). 523 535.Google Scholar
Cole, M.M. The Savannas. Biogeography and Geobotany. (1986). Academic Press, London.Google Scholar
Yangambi Publication 53., (1956). Google Scholar
DeMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M. Abrupt onset and termination of the African Humid Period. Quaternary Science Reviews 19, (2000). 347 361.CrossRefGoogle Scholar
Directorate of Overseas Surveys for the Nigerian Government, (1968). Nigeria 1:50.000. Biu Sheet 133 S.W. Lagos, London.Google Scholar
Dupont, L.M., and Agwu, C.O.C. Latitudinal shifts of forest and savanna in NW Africa during the Brunhes chron: Further marine palynological results from site M 16415 (9°N, 19°W). Vegetation History and Archaeobotany 1, (1992). 163 175.CrossRefGoogle Scholar
Faegri, K., and Iversen, J. Textbook of Pollen Analysis. (1989). Wiley, New York.Google Scholar
Füchtbauer, H. Sedimente und Sedimentgesteine II. Teil. (1988). Google Scholar
Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19, (2000). 189 211.CrossRefGoogle Scholar
Keay, R.W.J. An outline of Nigerian vegetation. (1959). Government Printer, Lagos.Google Scholar
Krammer, K., and Lange-Bertalot, H. Süsswasserflora von Mitteleuropa, Bacillariophyceae, 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. (1991). Fischer, Stuttgart.Google Scholar
Lézine, A.-M. Quaternary Research 2, (1989). 317 334.CrossRefGoogle Scholar
Maley, J. The African rain forest—Main characteristics of changes in vegetation and climate from the Upper Cretacous to the Quaternary. Proceedings of the Royal Society of Edinburgh 104B, (1996). 31 74.Google Scholar
Maley, J., Brenac, P. Review of Palaeobotany and Palynology 99, (1998). 157 187.CrossRefGoogle Scholar
Salzmann, U. Are savannas degraded forests?—A Holocene pollen record from the Sudanian zone of NE-Nigeria. Vegetation History and Archaeobotany 9, (2000). 1 15.CrossRefGoogle Scholar
Salzmann, U., and Waller, M. The Holocene vegetational history of the Nigerian Sahel based on multiple pollen profiles. Review of Palaeobotany and Palynology 100, (1998). 39 72.CrossRefGoogle Scholar
Servant, M., and Servant-Vildary, S. L'environnement Quaternaire du bassin du Tchad. Williams, M.A.J., and Faure, H. The Sahara and the Nile. (1980). Balkema, Rotterdam. 133 162.Google Scholar
Street-Perrott, F.A., Holmes, J.A., Waller, M.P., Allen, M.J., Barber, N.G.H., Fothergill, P.A., Harkness, D.D., Ivanovich, M., Kroon, D., and Perrot, R.A. Drought and dust deposition in the West African Sahel: A 5500-year record from Kajemarum Oasis, northeastern Nigeria. The Holocene 10, (2000). 293 302.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., and Spurk, M. INTCAL98 radiocarbon age calibration, 24000–0 cal B.P. Radiocarbon 40, (1998). 1041 1083.CrossRefGoogle Scholar
Swaine, M.D. Characteristics of dry forest in West Africa and the influence of fire. Journal of Vegetation Science 3, (1992). 365 374.CrossRefGoogle Scholar
Talbot, M.R., and Delibrias, G. A new Pleistocene-Holocene water-level curve for Lake Bosumtwi, Ghana. Earth and Planetary Science Letters 47, (1980). 336 344.CrossRefGoogle Scholar
Talbot, M.R., and Johannessen, T. A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of organic matter. Earth and Planetary Science Letter 110, (1992). 23 37.CrossRefGoogle Scholar
Tuley, P. The Land Resources of North East Nigeria Volume 1: The Environment. (1972). Foreign and Commonwealth Office Overseas Development AdministrationLand Resources Division, Surbiton.Google Scholar
Walter, H. Vegetation of the Earth and Ecological Systems of the Geo-Biosphere. (1979). Springer, Berlin.Google Scholar
White, F. The Vegetation of Africa. A Descriptive Memoir to Accompany the Unesco/AETFAT/UNSO Vegetation Map of Africa. (1983). Unesco, Paris.Google Scholar