Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T18:14:04.643Z Has data issue: false hasContentIssue false

Late Pleistocene–early Holocene paraglacial and fluvial sediment history in the Turbio valley, semiarid Chilean Andes

Published online by Cambridge University Press:  20 January 2017

Rodrigo Riquelme*
Affiliation:
Departamento de Ciencias Geológicas, Fac. de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile
Constanza Rojas
Affiliation:
Departamento de Ciencias Geológicas, Fac. de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile
Germán Aguilar
Affiliation:
Departamento de Ciencias Geológicas, Fac. de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile Laboratoire des Mécanismes et Transfert en Géologie, Université de Toulouse, 14 avenue Edouard Belin, 31400 Toulouse, France
Pablo Flores
Affiliation:
Departamento de Ciencias Geológicas, Fac. de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile
*
Corresponding author. Fax: +56 55 355977.

Abstract

The transitional character of climatic conditions confers great relevance to paleoclimate studies in the semiarid region where glacial and Holocene geomorphologic records are scarce. Here we present the paraglacial and fluvial evolution of the Turbio valley (30°S) using both field observations and 14C AMS chronology. Two key sites at the uppermost Turbio valley show glacial margins which likely formed during the 17–12 ka Central Andean Pluvial Event and earlier 37–27 ka episodes associated with glacial advances reported elsewhere in the semiarid Andes. Likewise, two episodes of subsequent paraglacial response are identified: a first episode corresponds to early Holocene fine-grained deposits (~ 11,500–7800 cal yr BP) extending far downstream (> 40 km) from the glacial margins. These deposits and coeval debris cones (~ 11,000–5500 cal yr BP) are the result of arid conditions with occasional runoffs that were unable to export sediments along the trunk valley. The second episode corresponds to disconformably overlying fluvial gravels extending ~ 70 km downstream from the glacial margin, indicative of an increase in the fluvial transport capacity occurring not long after 5500 cal yr BP. Fluvial transport increase resulted from a late Holocene shift to wetter climate conditions, representing a forcing factor which enhanced the paraglacial response.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Present address: Sociedad Minera Isla Riesco, Avenida El Bosque Norte 500, piso 19, Las Condes, Santiago, Chile.

References

Abele, G. Derrumbes de montaña y morrenas en los Andes chilenos. Revista de Geografía Norte Grande 11, (1984). 1730.Google Scholar
Ammann, C., Bettina, J., Kammer, K., and Messerli, B. Late Quaternary Glacier response to humidity changes in the arid Andes of Chile (18°–29°S). Palaeogeography, Palaeoclimatology, Palaeoecology 172, (2001). 313326.Google Scholar
Ashmore, P. Contemporary erosion of the Canadian landscape. Progress in Physical Geography 17, (1993). 190204.CrossRefGoogle Scholar
Ballantyne, C.K. Paraglacial geomorphology. Quaternary Science Reviews 21, (2002). 19352017.Google Scholar
Betancourt, J.L., Latorre, C., Rech, J.A., Rylander, K.A., and Quade, J. A 22, 000-year record of monsoonal precipitation from northern Chile's Atacama Desert. Science 289, (2000). 15421546.CrossRefGoogle ScholarPubMed
Bloom, A.L. Geomorphology: a systematic analysis of Late Cenozoic landforms. third Edition (1998). Prentice Hall, (494 pp.)Google Scholar
Broecker, W.S., and Walton, A.F. The geochemistry of 14C in freshwater systems. Geochimica et Cosmochimica Acta 16, (1959). 1538.Google Scholar
Church, M., and Ryder, J.M. Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geological Society of America Bulletin 83, (1972). 30593071.Google Scholar
Church, M., and Slaymaker, O. Disequilibrium of Holocene sediment yield in glaciated Brithish Columbie. Nature 337, (1989). 452454.CrossRefGoogle Scholar
Cooke, R., Warren, A., and Goudie, A. Desert geomorphology. (1993). UCL Press, London. (526 pp.)Google Scholar
Gao Cunhai, Sedimentary facies changes and climate-tectonic control in a foreland basin, the Urumqui River, Tian Shan, northwest China. Sedimentary Geology 169, (2004). 2946.Google Scholar
Favier, V., Falvey, M., Rabatel, A., Praderio, E., and López, D. Interpreting discrepancies between discharge and precipitation in high-altitude area of Chile's Norte Chico region (26–32°S). Water Resources Research 45, (2009). W02424 http://dx.doi.org/10.1029/2008WR006802Google Scholar
Fielding, C.R. Fluvial channel and overbank deposits from the Westphalian of the Durham coalfield NE England. Journal of Sedimentology 33, (1986). 119140.CrossRefGoogle Scholar
Fuller, I.C., Macklin, M.G., Lewin, J., Passmore, D.g., and Wintle, A.G. River response to high frequency climate oscillations in southern Europe over the past 200 ka. Geology 26, (1998). 275278.Google Scholar
Garreaud, R.D., Vuille, M., Compagnucci, R., and Marengo, J. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281, (2008). 180195.Google Scholar
Grosjean, M. Mid-Holocene climate in the south-central Andes: humid or dry?. Science 292, (2001). 2391a Google Scholar
Grosjean, M., Nuñez, L.A., Cartajena, I., and Messerli, B. Mid-Holocene climate and Culture change in the Atacama Desert, northern Chile. Quaternary Research 48, (1997). 239246.Google Scholar
Grosjean, M., Geyh, M.A., Messerly, B., Schreier, H., and Veit, H. A late Holocene (< 2600 BP) glacial advance in the south central Andes (29°S), northern Chile. Holocene 8, 4 (1998). 473479.CrossRefGoogle Scholar
Heusser, C.J. Ice age vegetation and climate of subtropical Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 80, (1990). 107127.Google Scholar
Jenny, B., Valero-Garcés, B., Villa-Martínez, R., Urrutia, R., Geyh, M., and Veit, H. Early to mid-Holocene aridity in central Chile and the southern westerlies: the Laguna de Aculeo record (34°S). Quaternary Research 58, (2002). 160170.Google Scholar
Kull, C., and Grosjean, M. Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate glacier model. Journal of Glaciology 46, (2000). 622632.Google Scholar
Kull, C., Grosjean, M., and Veit, H. Modelling modern and late Pleistocene glacio-climatological Conditions in the North Chilean Andes (29-30°S). Climatic Change 52, (2002). 359381.Google Scholar
Latorre, C., Betancourt, J.L., Rylander, K.A., and Quade, J. Vegetation invasions into the absolute desert: a 45,000 yr rodent midden record from the Calama–Salar de Atacama basins, northern Chile (lat 22°–24°S). Geological Society of America Bullentin 114, 3 (2002). 349366.Google Scholar
Latorre, C., Betancourt, J.L., Rylander, K.A., Quade, J., and Matthei, O. A 13.5-kyr vegetation history from the arid prepuna of northern Chile (22–23°S). Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 223246.Google Scholar
Latorre, C., Betancourt, J.L., and Arroyo, M.T.K. Late Quaternary vegetation and climate history of a perennial river canyon in the Rio Salado basin (22°S) of northern Chile. Quaternary Research 65, (2006). 450466.Google Scholar
Macklin, M.G., Fuller, I.C., Lewin, J., Maas, G.S., Passmore, D.G., Rose, J., Woodward, J.C., Black, S., Hamlin, R.H.B., and Rowan, J.S. Correlation of fluvial sequences in the Mediterranean basin over the last 200 ka and their relationship to climate change. Quaternary Science Reviews 21, (2002). 16331641.Google Scholar
Maldonado, A., and Villagrán, C. Climate variability over the last 9900 cal yr BP from a swampy forest pollen record along the semiarid coast of Chile. Quaternary Research 66, (2006). 246258.Google Scholar
Maldonado, A., Betancourt, J.L., Latorre, C., and Villagrán, C. Pollen analyses from a 50, 000-yr rodent midden series in the southern Atacama Desert (25°30′S). Journal of Quaternary Science 20, (2005). 493507.Google Scholar
Miall, A.D. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Science Reviews 22, (1985). 261308.Google Scholar
Nasi, C., Moscoso, R., and Maksaev, V. (1990). Hoja Guanta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile. No. 67, 163 p., escala 1:250.000. Santiago, Chile.Google Scholar
Paskoff, R. Le Chili semi-aride, recherches géomorphologiques. (1970). Biscaye, Bordeaux. (420 p.)Google Scholar
Placzeck, C., Quade, J., and Patchett, P.J. Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: implications for causes of tropical climate change. Geological Society of America Bulletin 118, 5 (2006). 515532.Google Scholar
Quade, J., Rech, J.A., Betancourt, J.L., Latorre, C., Quade, B., Rylander, K.A., and Fisher, T. Paleowetlands and regional climate change in the central Atacama Desert, northern Chile. Quaternary Research 69, (2008). 343360.Google Scholar
Raj, Rachna Late Pleistocene fluvial sedimentary facies, the Dhadhar River basin, Western India. Quaternary International 159, (2007). 93101.Google Scholar
Rech, J., Quade, J., and Betancourt, J. Late Quaternary paleohydrology of the central Atacama Desert (22–24°S), Chile. Geological Society of America Bulletin 114, (2002). 334348.Google Scholar
Rech, J., Pigati, J., Quade, J., and Betancourt, J.L. Re-evaluation of mid-Holocene deposits at Quebrada Puripica, northern Chile. Palaeoecology, Palaeogeography, Palaeoclimatology, 194, (2003). 207222.Google Scholar
Riquelme, R., Aguilar, G., Jensen, A., Verdejo, J., Herrera, S., Riveros, K., Navarrete, P., (2010). Evaluación hidrogeológica de la Cuenca del Río Huasco, con énfasis en la cuantificación de los recursos hídricos superficiales y subterráneos (geomorfológica, dinámica fluvial reciente y relleno de la cuenca).: Informe Innova Chile, CORFO, Gobierno de Chile., vol. 5, 140 p.Google Scholar
Rose, J., Meng, X.M., and Watson, C. Palaeoclimate and palaeoenvironmental responses in the western Mediterranean over the last 140 ka; evidence from Mallorca, Spain. Journal of the Geological Society of London 156, (1999). 435448.Google Scholar
Smith, R.H.M. Alluvial palaeosols and pedofacies sequences in the Permian Iower Beaufort of the southwestern Karoo basin, South Africa. Journal of Sedimentary Petrology 60, (1990). 258276.Google Scholar
Stuiver, M., and Reimer, P.J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215230.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., and Spurk, M. INTCAL98 radiocarbon age calibration, 24.000–0 cal BP. Radiocarbon 40, (1998). 10411084.Google Scholar
Sylvestre, F., Servant, M., Servant-Vildary, S., Causse, C., Fournier, M., and Ybert, J.P. Lake-level chronology on the southern Bolivian Altiplano (18–23°S) during late-Glacial time and the early Holocene. Quaternary Research 51, (1999). 281300.Google Scholar
Valero-Garces, B., Grosjean, M., Schwalb, A., Geyh, M.A., Messerli, B., and Kelts, K. Late Holocene environmental change in the Atacama Altiplano: limnogeology of Laguna Miscanti, Chile. Journal of Paleolimnology 16, (1996). 121.Google Scholar
Veit, H. Upper Quaternary landscape and climate evolution in the Norte Chico (Northern Chile). An overview. Mountain Research Development vol. 13, (1993). 139144.Google Scholar
Veit, H. Southern westerlies during the Holocene deduced from geomorphological and pedological Studies in the Norte Chico, Northern Chile (27–33°S). Palaeogeography, Palaeoclimatology, Palaeoecology 123, (1996). 107119.Google Scholar
Villagrán, C., and Varela, J. Palynological evidence for increased aridity on the Central Chilean coast during the Holocene. Quaternary Research 34, (1990). 198207.CrossRefGoogle Scholar
Villa-Martinez, R., and Villagrán, C. Historia de la vegetación de bosques pantanosos de la costa de Chile central durante el Holoceno medio y tardío. Revista Chilena de Historia Natural 70, (1997). 391401.Google Scholar
Wirrmann, D., and Mourguiart, P. Late quaternary spatio-temporal limnological variation in the Altiplano of Bolivia and Peru. Quaternary Research 34, (1995). 198207.Google Scholar
Zech, R., Kull, C., and Veit, H. Late Quaternary glacial history in the Encierro valley, northern Chile (29°S), deduced from 10Be surface exposure dating. Palaeogeography, Palaeoclimatology, Palaeoecology 243, (2006). 277286.Google Scholar
Zech, R., Kull, R., Kubik, P.W., and Veit, H. Exposure dating of Late Glacial and pre-LGM moraines in the Cordon de Doña Rosa, Northern/Central Chile (31°S). Climate of the Past Discussions 3, (2007). 114.Google Scholar
Zech, R., May, J.-H., Kull, C., Ilgner, J., Kubik, P.W., and Veit, H. Timing of the late Quaternary glaciations in the Andes from 15 to 40°S. Journal of Quaternary Science 23, 6–7 (2008). 635647.Google Scholar