Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T20:34:55.988Z Has data issue: false hasContentIssue false

Late Pleistocene eolian features in southeastern Maryland and Chesapeake Bay region indicate strong WNW–NW winds accompanied growth of the Laurentide Ice Sheet

Published online by Cambridge University Press:  20 January 2017

Helaine W. Markewich*
Affiliation:
U.S. Geological Survey, 3039 Amwiler Rd., Ste 130, Peachtree Business Center, Atlanta, Georgia 30360-2824, USA
Ronald J. Litwin
Affiliation:
U.S. Geological Survey, Reston, Virginia, USA
Milan J. Pavich
Affiliation:
U.S. Geological Survey, Reston, Virginia, USA
George A. Brook
Affiliation:
University of Georgia Department of Geography, Athens, Georgia, USA
*
*Corresponding author. Fax: +1 770 903 9199. Email Address:[email protected]

Abstract

Inactive parabolic dunes are present in southeastern Maryland, USA, along the east bank of the Potomac River. More elongate and finer-grained eolian deposits and paha-like ridges characterize the Potomac River–Patuxent River upland and the west side of Chesapeake Bay. These ridges are streamlined erosional features, veneered with eolian sediment and interspersed with dunes in the low-relief headwaters of Potomac- and Patuxent-river tributaries. Axis data for the dunes and ridges indicate formation by WNW–NW winds. Optically stimulated luminescence and radiocarbon age data suggest dune formation from ∼ 33–15 ka, agreeing with the 30–13 ka ages Denny, C.S., Owens, J.P., Sirkin, L., Rubin, M., 1979. The Parsonburg Sand in the central Delmarva Peninsula, Maryland and Delaware. U.S. Geol. Surv. Prof. Pap. 1067-B, 16 pp. suggested for eolian deposits east of Chesapeake Bay. Age range and paleowind direction(s) for eolian features in the Bay region approximate those for late Wisconsin loess in the North American midcontinent. Formation of midcontinent loess and Bay-region eolian features was coeval with rapid growth of the Laurentide Ice Sheet and strong cooling episodes (δ18O minima) evident in Greenland ice cores. Age and paleowind-direction coincidence, for eolian features in the midcontinent and Bay region, indicates strong mid-latitude WNW–NW winds for several hundred kilometers south of the Laurentide glacial terminus that were oblique to previously simulated anticyclonic winds for the last glacial maximum.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, K.K., Svensson, A., Johnsen, S.J., Rasmussen, S.O., Bigler, M., Röthlisberger, R., Ruth, U., Siggard-Andersen, M.-L., Steffensen, J.P., Dahl-Jensen, D., Vinther, B.M., and Clausen, H.B. The Greenland ice core chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quaternary Science Reviews 25, (2006). 32463257.CrossRefGoogle Scholar
Bettis, E.A. III, Muhs, D.R., Roberts, H.M., and Wintle, A.G. Last glacial loess in the conterminous USA. Quaternary Science Reviews 22, (2003). 19071946.Google Scholar
Busacca, A.J., Beget, J.E., Markewich, H.W., Muhs, D.R., Lancaster, N., and Sweeney, M.R. Eolian sediments. Gillespie, A.R., and Porter, S.C. The Quaternary Period in the United States, Developments in Quaternary Science, vol. 1. (2004). Elsevier, Amsterdam. 275309.Google Scholar
Carman, J.E., (1909). The Mississippi Valley between Savanna and Davenport. Illinois State Geological Survey Bulletin 13, pp. 4345., 81.Google Scholar
COHMAP Members Climate changes of the last 18,000 years: observations and model simulations. Science 241, (1988). 10431052.CrossRefGoogle Scholar
Denny, C.S., and Owens, J.P. Sand Dunes on the Central Delmarva Peninsula, Maryland and Delaware. U.S. Geological Survey Professional Paper 1067-C, (1979). 15��ppGoogle Scholar
Denny, C.S., Owens, J.P., Sirkin, L., and Rubin, M. The Parsonburg Sand in the central Delmarva Peninsula, Maryland and Delaware. U.S. Geological Survey Professional Paper 1067-B, (1979). 16��ppGoogle Scholar
Divins, D.L., Metzer, D. (n.d.), National Geophysical Data Center Coastal Relief model. retrieved May 2006, http://www.ngdc.noaa.gov/mgg/coastal/coastal.html.Google Scholar
Eaton, L.S., Wieczorek, G., Morgan, B., McNown, A., and Litwin, R.J. Periglacial slope processes and deposits in the Blue Ridge Mountains of central Virginia. Abstracts with Programs, Geological Society of America 34, 6 (2002). 276 Google Scholar
Fairbanks, R.G., Mortlock, R.A., Chiu, T.-C., Cao, L., Kaplan, A., Guilderson, T.P., Fairbanks, T.W., Bloom, A.L., Grootes, P.M., and Nadeau, M.-J. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24, 16–17 (2005). 17811796.CrossRefGoogle Scholar
Feathers, J.K., Rhodes, E.J., Huot, S., and McAvoy, J.M. Luminescence dating of sand deposits related to late Pleistocene human occupation at the Cactus Hill Site, Virginia, USA. Quaternary Geochronology 1, 3 (2006). 167187.Google Scholar
Flemal, R.C., Odom, I.E., and Vail, R.G. Stratigraphy and origin of the paha topography of northwestern Illinois. Quaternary Research 2, (1972). 232243.Google Scholar
French, H.M., Demitroff, M., Forman, S.L., and Newell, W.L. A chronology of late Pleistocene permafrost events in Southern New Jersey, eastern USA. Permafrost and Periglacial Processes 18, (2007). 4959.Google Scholar
Hack, J.T. Geology of the Brandywine area and origin of the upland of southern Maryland, in Geology and soils of the Brandywine area, Maryland. U.S. Geological Survey Professional Paper 267-A, (1955). 142.Google Scholar
Jouzel, J., Alley, R.B., Cuffey, K.M., Dansgaard, W., Grootes, P., Hoffmann, G., Johnsen, S.J., Koster, R.D., Peel, D., Shuman, C.A., Stievenard, M., Stuiver, M., and White, J., (1997). Validity of the temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research 102, (C12), 26,47126,487.Google Scholar
Kutzbach, J.E., and Guetter, P.J. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years. Journal of the Atmospheric Sciences 43, 16 (1986). 17261758.2.0.CO;2>CrossRefGoogle Scholar
Kutzbach, J., Gallimare, R., Harrison, S., Behling, P., Selin, R., and Laarif, F. Climate and biome simulations for the past 21,000 years. Quaternary Science Reviews 17, (1998). 473506.CrossRefGoogle Scholar
Leverett, F., (1899). Glacial map of northwestern Illinois, In: The Illinois glacial lobe.: U.S. Geological Survey Monographs XXXVII, plate XXII and pp. 134136., 144.Google Scholar
Mallinson, D., Burdette, K., Mahan, S., and Brook, G. Optically stimulated luminescence age controls on late Pleistocene and Holocene coastal lithosomes, North Carolina, USA. Quaternary Research 69, (2008). 97109.Google Scholar
Markewich, H.W., Litwin, R.J., Earles, E.H., and Davis, S.L. Implications of late Pleistocene eolian deposits in the Chesapeake Bay region of the Eastern U.S.. Geological Society of America Abstracts with Programs 39, 2 (2007). 69 Google Scholar
McCartan, L. Geologic map of Charles County. State of Maryland Department of Natural Resources, Maryland Geological Survey. (1989). Google Scholar
McGee, W.J. The Pleistocene history of northeastern Iowa. U.S. Geological Survey 11th Annual Report. (1891). 189577.Google Scholar
Melton, F.A. A tentative classification of sand dunes; its application to dune history in the Southern High Plains. Journal of Geology 48, 2 (1940). 113145.Google Scholar
Mixon, R.B., Southwick, D.L., and Reed, J.C. Geologic map of the Quantico quadrangle, Prince William and Stafford Counties, Virginia, and Charles County, Maryland. U.S. Geological Survey Geologic Quadrangle Map. (1972). 1044 Google Scholar
Muhs, D.R., Bettis, E.A. III Geochemical variations in Peoria Loess of western Iowa indicate paleowinds of midcontinental North America during last glaciation. Quaternary Research 53, (2000). 4961.Google Scholar
Newell, W.L., Clark, I., (2008). Geomorphic map of Worcester County, Maryland, interpreted from a LiDAR-based, digital elevation model. U.S. Geological Survey Open-File Report 20081005.Google Scholar
Peltier, W.R., and Fairbanks, R.G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, (2006). 33223337.CrossRefGoogle Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M., Rothlisberger, R., Fischer, H., Goto-Azuma, K., Hanson, M.E., and Ruth, U. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111, (2006). D06102 Google Scholar
Rasmussen, S.O., Seierstad, I.K., Andersen, K.K., Bigler, M., Dahl-Jensen, D., and Johnsen, S.J. Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and paleoclimatic implications. Quaternary Science Reviews 27, (2008). 1628.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. INTCAL04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, 3 (2004). 10291058.Google Scholar
Reusser, L.J., Bierman, P.R., Pavich, M.J., Zen, E., Larsen, J., and Finkel, R. Rapid Late Pleistocene incision of the Atlantic passive-margin river gorges. Science 305, (2004). 499502.Google Scholar
Seppälä, M. Wind as a geomorphic agent in cold climates. (2004). Cambridge University press, Cambridge.Google Scholar
Sirkin, L.A., Denny, C.S., and Rubin, M. Late Pleistocene environment of the central Delmarva Peninsula, Delaware-Maryland. Geological Society of America Bulletin 88, (1977). 139142.Google Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Rasmussen, S.O., Röthlisberger, R., Steffensen, J.P., and Vinther, B.M. The Greenland ice core chronology 2005, 15–42 ka. Part 2: comparison to other records. Quaternary Science Reviews 25, (2006). 32583267.Google Scholar
Thorson, R.M., and Schile, C.A. Deglacial eolian regimes in New England. Geological Society of America Bulletin 107, (1995). 751761.2.3.CO;2>CrossRefGoogle Scholar
Thorp, J., Smith, H.T.U., (1952). Pleistocene eolian deposits of the United States, Alaska, and parts of Canada. National Research Council Committee for the Study of Eolian Deposits. Geological Society of America Map, Scale 1:2,500,000.Google Scholar
Winograd, I.J. The magnitude and proximate cause of ice-Sheet growth Since 35,000 yr B.P. Quaternary Research 56, (2001). 299307.Google Scholar