Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T17:17:49.183Z Has data issue: false hasContentIssue false

Late Pleistocene Detrital Sediment Yield of the Jura Glacier, France

Published online by Cambridge University Press:  20 January 2017

Jean-François Buoncristiani
Affiliation:
UMR 5561 CNRS, Centre des Sciences de la Terre, Université de Bourgogne, 6 boulevard Gabriel, Dijon, 21000, France, E-mail: [email protected]
Michel Campy
Affiliation:
UMR 5561 CNRS, Centre des Sciences de la Terre, Université de Bourgogne, 6 boulevard Gabriel, Dijon, 21000, France, E-mail: [email protected]

Abstract

Measures of present-day glacial erosion vary widely with the technique employed. This paper quantifies the glacial material trapped in a proglacial lake during the Würm glacial period. The Combe d'Ain site was occupied by a meltwater lake where all the detrital material entering it from the Jura glacier accumulated. Sediment yield is computed from three factors: (1) the size of the sediment source area, (2) the length of time the system operated, and (3) the volume of sediment trapped. The sediment budget of the lake system suggests a detrital sediment yield of 4400±1700 metric tons per square kilometer and per calendar year. This represents a denudation rate of 1.6±0.6 mm per year, illustrating that mechanical erosion by the Jura glacier is more intensive than other processes of erosion.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, L.W. (1978). Cirque glacier erosion rates and characteristics of neoglacial till, Pangnirtung Fjord area, Baffin Island, N.W.T., Canada. Arctic and Alpine Research 10, 749760.Google Scholar
Anderson, S.P., Drever, J., and Humphrey, N.F. (1997). Chemical weathering in glacial environments. Geology 25, 399402.Google Scholar
Andrews, J.T. (1971). Estimates of variations in glacial erosion from the volume of corries and moraines. Geological Society of America Abstract with Programs 3, 493 Google Scholar
Andrews, J.T. (1972). Glacier power, mass balances, velocities and erosion potential. Zeitschrift für Geomorphologies 13, 117.Google Scholar
Andrews, J.T., and Le Masurier, W.E. (1973). Rate of Quaternary glacial erosion and corrie formation, Marie Byrd Land, Antarctica. Geology 1, 7580.Google Scholar
Andrews, J.T., Milliman, J.D., Jennings, A.E., Rynes, N., and Dwyer, J. (1994). Sediment thicknesses and Holocene glacial marine sedimentation rates in three east Greenland fjords (ca 68°N). Journal of Geology 102, 669683.Google Scholar
Aubert, D. (1965). Calotte glaciaire et morphologie jurassienne. Eclogae Geologicae Helvetiae 58, 555578.Google Scholar
Bell, M., and Laine, E.P. (1985). Erosion of the Laurentide region of North America by glacial and glaciofluvial processes. Quaternary Research 23, 154174.Google Scholar
Bezinge, A., Clark, M.J., Gurnell, A.M., and Warburton, J. (1989). The management of sediment transported by glacial melt-water streams and its significance for the estimation of sediment yield. Annals of Glaciology 13, 15.Google Scholar
Björnsson, H. (1979). Glaciers in Iceland. Jökull 29, 7480.Google Scholar
Buoncristiani, J.F. (1993). Relation entre faciès géophysiques et faciès sédimentaires. Application á la géométrie des corps sédimentaires du remplissage lacustre de Chaillexon. Mémoire de DEA de l'Université de Bourgogne, Dijon.Google Scholar
Buoncristiani, J.F. (1997). Production sedimentaire détritique des systémes glaciaires. Quantification des produits stockés dans un lac proglaciaire durant la dernière glaciation: Exemple du lac de la Combe d'Ain (Jura, France). Thèse de doctorat de l'Université de Bourgogne, Dijon.Google Scholar
Campy, M. (1982). Le Quaternaire Franc-comtois: Essai chronologique et paléoclimatique. Thèse de doctorat de l'Université Franche-Comté, Besancon.Google Scholar
Campy, M. (1983). Lithological units of glaciolacustrine border during the last glaciation in the Jura range (France). Acta Geologica Hispanica 18, 160190.Google Scholar
Campy, M., and Arn, R. (1991). The Jura glaciers: Paleogeography in the Würmian circum-Alpine zone. Boreas 20, 1727.Google Scholar
Campy, M., and Chaline, J. (1993). Missing records and depositional breaks in French late Pleistocene cave sediments. Quaternary Research 40, 318331.Google Scholar
Campy, M., and Richard, H. (1988). Modalités et chronologie de la déglaciation würmienne dans la chaı̂ne jurassienne. Bulletin de I'AFEQ 3, 8190.Google Scholar
Campy, M., Buoncristiani, J.F., and Bichet, V. (1998). Sediment yield from glacio-lacustrine calcareous siltites during the post-glacial period in Combe d'Ain (Jura, France). Earth Surface Processes and Landforms 29, 429444.Google Scholar
Chernova, L.P. (1981). Influence of mass-balance and run-off on relief-forming activity of mountain glaciers. Annals of Glaciology 2, 6970.Google Scholar
Corbel, J. (1959). Vitesses de l'érosion. Zeitschrift für Geomorphologie 3, 128.Google Scholar
Drewry, D. (1986). Glacial Geologic Processes. Edward Arnold, London.Google Scholar
Einsele, G. (1992). Sedimentary Basins. Evolution, Facies, and Sediment Budget. Springer-Verlag, Paris.Google Scholar
Elverhoı̈, A., Swendsen, J.I., Solhein, A., Andersen, E.S., and Millian, A.L. (1995). Late Quaternary sediment yield from the high Arctic Svalbard area. Journal of Geology 103, 117.Google Scholar
Eyles, N. (1993). Earth's glacial record and its tectonic setting. Earth-Science Reviews 35, 1248.Google Scholar
Eyles, C.H., Eyles, N., and Miall, A.D. (1985). Models of glaciomarine sedimentation and their application to the interpretation of ancient glacial sequences. Palaeogeography, Palaeoclimatology, Palaeoecology 51, 1584.Google Scholar
Hallet, B., Hunter, L., and Bogen, J. (1996). Rate of erosion and sediment evacuation by glacier: A review of field data and their implications. Global and Planetary Change 12, 213235.Google Scholar
Harbor, J., and Warburton, J. (1993). Relative rates of glacial and nonglacial erosion in Alpine environments. Arctic and Alpine Research 25-1, 17.CrossRefGoogle Scholar
Hiscott, R.N., and Asku, A.E. (1995). Quaternary sedimentary processes and budgets in Orphan basin, southwestern Labrador Sea. Quaternary Research 45, 160175.Google Scholar
Hodgkins, R., Tranter, M., and Dowdeswell, J.A. (1997). Solute provenance, transport and denudation in high Arctic glacierized catchment. Hydrological Processes 11, 1813, 1832 3.0.CO;2-C>CrossRefGoogle Scholar
Knapp, R.W., and Steeples, D.W. (1986). High-resolution common depth point reflection profiling: Field acquisition parameter design. Geophysics 51, 283294.Google Scholar
Lamy-au-Rousseau, R. (1989). Dynamique sédimentaire dans un lac proglaciaire. Thèse de doctorat de l'Université de Bourgogne, Dijon.Google Scholar
Lliboutry, L. (1965). “Traité de Glaciologie” tome 2. Masson, Paris.Google Scholar
Matheron, G. (1962). Traité de géostatistique appliquée: Théorie.. Google Scholar
McPherson, J.G., Shanmugan, G., and Moiola, R.J. Fan deltas and braided deltas: A conceptual problem. Nemec, W., and Steel, R. (1988). Fan Deltas: Sedimentology and Tectonic Setting. Blackie and Son, London. 313.Google Scholar
Meybeck, M. (1979). Concentrations des eaux fluviales en éléments majeurs et apport en solution aux oceans. Revue de Géographie Physique et Géologie Dynamique 21, 215246.Google Scholar
Morgan, V.I., Jacka, T.H., Akerman, G.J., and Clarke, A.L. (1982). Outlet glacier and mass-budget studies in Enderby, Kemp, and MacRobertson lands, Antarctica. Annals of Glaciology 3, 204210.Google Scholar
Müller, B.U. (1999). Paraglacial sedimentation and denudation processes in an Alpine valley of Switzerland. An approach to the quantification of sediment budgets. Geodinamica Acta 12, 291301.Google Scholar
Nye, J.F. (1951). The flow of glaciers and ice sheets as a problem in plasticity. Proceedings of the Royal Society of London Series. A 207, 554572.Google Scholar
Paterson, W.S.B. (1994). The Physics of Glaciers. Pergamon, Oxford.Google Scholar
Reeh, N. (1982). A plasticity theory approach to the steady-state shape of three-dimensional ice sheets. Journal of Glaciology 28, 431455.Google Scholar
Reeh, N. (1988). A flow-line model for calculating the surface profile and the velocity, strain rate, and stress fields in an ice sheet. Journal of Glaciology 34, 4654.Google Scholar
Reheis, M.J. (1975). Source, transportation and deposition of debris on Arapaho Glacier, Front Range, Colorado, U.S.A. Journal of Glaciology 44, 407420.Google Scholar
Reynolds, R.C., and Johnson, N.M. (1972). Chemical weathering in the temperate glacial environment of the North Cascade Mountain. Geochimica et Cosmochimica Acta 36, 537554.Google Scholar
Richard, H. (1983). Nouvelles contributions á l'histoire de la végétation franc-comtoise Tardiglaciaire et Holocène, á partir des données de la palynologie. Thèse de doctorat de l'Université de Franche Comté, Besancon.Google Scholar
Richard, H. (1994). Travaux présentés pour l'habilitation á diriger des recherches. Université de Franche Comté, Besancon.Google Scholar
Ruffaldi, P. (1995). La fin du Pléniglaciaire dans le Jura méridional á partir des analyses palynologique de lac de Cerain (Ain, France). Comptes Rendus de l'Académie des Sciences 320 IIa, 11171123.Google Scholar
Schindler, E. (1974). Zur Geologie des Zürichees. Eclogae Geologicae Helvetiae 67, 163196.Google Scholar
Sharp, M., Tanter, M., Brown, G.H., and Skidmore, M. (1995). Rates of chemical denudation and CO2 drawdown in a glacier-covered alpine catchment. Geology 23, 6164.Google Scholar
Smith, N.D., and Ashley, G. Proglacial lacustrine environment. Ashley, G.M., Shaw, J., and Smith, N.D. (1985). Glacial Sedimentary Environments. 135207.Google Scholar
Souchez, R.A., and Lemmens, M.M. Solutes. Gurnell, A.M., and Clark, M.J. (1987). Glacio-fluvial sediment transfer: An Alpine Perspective. Wiley, New York. 285300.Google Scholar
Sturm, M. Origin and composition of clastic varves. Schlüchter, Ch. (1979). Moraines and varves. A. A. Balkena, Rotterdam. 281285.Google Scholar
Sugden, D.E., and John, B.S. (1976). Glaciers and Landscapes, a Geomorphological Approach. Edward Arnold, London.Google Scholar
Svendsen, J.I., Mangerud, J., and Miller, G.H. (1989). Denudation rates in the Arctic estimated from lake sediment on Spitsbergen, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology 76, 153168.Google Scholar
Telford, W.M., Geldart, L.P., Sheriff, R.E., and Keys, D.A. (1976). Prospection Géophysique. Tome 1, Prospection Sismique. La Barbannerie, Paris.Google Scholar
Warburton, J. (1990). An alpine proglacial fluvial sediment budget. Geografiska Annaler 72A, 261272.Google Scholar
Wegmüller, S. (1966). Uber der spät und postglaziale vegetationgeschichte des südwestlichen Jura. Verlag Huber H, Bern.Google Scholar
Yilmaz, O. (1988). Seismic Data Processing, Investigation in Geophysics, Volume 2. Society of Exploration in Geophysicists, Google Scholar