Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T05:08:49.997Z Has data issue: false hasContentIssue false

Late Holocene pinewoods persistence in the Gredos Mountains (central Spain) inferred from extensive megafossil evidence

Published online by Cambridge University Press:  20 January 2017

Juan M. Rubiales*
Affiliation:
Unidad de Botánica, Escuela Técnica Superior de Ingenieros de Montes, Universidad Politécnica de Madrid, 28040, Spain
Mar Génova
Affiliation:
Escuela Universitaria de Ingeniería Técnica Forestal, Universidad Politécnica de Madrid, 28040, Spain
*
*Corresponding author at: Escuela de Montes, Ingeniería Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain.E-mail address:[email protected] (J.M. Rubiales).

Abstract

Macro- and megafossil studies are of great value in palaeoecology because such evidence is spatially precise, directly radiocarbon dated, and usually taxon-specific. Here, we present new macro- and megafossil data from ten sites from the Gredos Mountains, central Iberian Peninsula, that suggest persistent forest cover through the late Holocene, with a widespread belt of pinewoods in the highlands of the Central Iberian Mountains. Well-preserved pine cones found at several sites revealed that both Pinus sylvestris and Pinus nigra were present in the area during the middle and late Holocene at locations of important biogeographical interest. The P. sylvestris forests represent one of the southernmost locations of its entire range. P. nigra was not known to have occurred in central Spain during the Holocene; it was found at the westernmost edge of its range in siliceous soils, a rare environment compared with the rest of its distribution. Finally, we explored the potential for obtaining a long pine chronology from central Iberia using tree-ring measurements and radiocarbon dating of pine subfossil logs.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agee, J.K. (1998). Fire and pine ecosystems. Richardson, D.M. Ecology and Biogeography of Pinus . Elsevier Inc., Cambridge. 193218.Google Scholar
Alejano, R., and Martínez Montes, E. (2006). Aportaciones de la paleobotánica a la interpretación del área natural de Pinus nigra Arn. subsp. salzmannii en las Sierras Béticas (sureste de España). Investigacion Agraria: Sistema Recursos Forestal Fuera de Serie 124136.Google Scholar
Anderson, R.S., Jiménez-Moreno, G., Carrión, J.S., and Pérez-Martínez, C. (2011). Postglacial history of alpine vegetation, fire and climate from Laguna del Río Seco, Sierra Nevada, southern Spain. Quaternary Science Reviews 30, 16151629.Google Scholar
Andrade, A., and Hermín, R. (2007). El pinar de Hoyocasero (Ávila): ¿antigua repoblación o pinar natural conservado?. Anales de Biologia 29, 3351.Google Scholar
Andrade, A., Valdeolmillos, A., and Ruíz-Zapata, B. (1994). Modern pollen spectra and contemporary vegetation in the Paramera Mountain range (Ávila, Spain). Review of Palaeobotany and Palynology 82, 127139.Google Scholar
Aranbarri, J., González-Sampériz, P., Valero-Garcés, B., Moreno, A., Gil-Romera, G., SevillaCallejo, M., García-Prieto, E., Di Rita, F., Mata, M.P., Morellón, M., Magri, D., Rodríguez Lázaro, J., and Carrión, J.S. (2014). Rapid climatic changes and resilient vegetation during the Lateglacial and Holocene in a continental region of south-western Europe. Global and Planetary Change 114, 5065.Google Scholar
Badal, E., Bernabeu, J., and Vernet, J.L. (1994). Vegetation changes and human action from the Neolithic to the Bronze Age (7000–4000 B.P.) in Alicante, Spain, based on charcoal analysis. Vegetation History and Archaeobotany 3, 155166.Google Scholar
Benito Garzón, M., Sánchez de Dios, R., and Sainz Ollero, H. (2007). Predictive modelling of tree species distributions on the Iberian Peninsula during the Last Glacial Maximum and Mid-Holocene. Ecography 30, 120134.Google Scholar
Benito Garzón, M., Sánchez de Dios, R., and Sainz Ollero, H. The evolution of the Pinus sylvestris L. area in the Iberian peninsula from the last maximum glacial (21000 BP) to 2100 under climate change. The Holocene 18, (2008). 110.Google Scholar
Benso, M. (2007). Estudio dendrocronológico de Pinus sylvestris L. en los Montes de Valsaín (Segovia). Proyecto Fin de Carrera. Escuela Universitaria de Ingeniería Técnica Forestal. Universidad Politécnica de Madrid, Google Scholar
Büntgen, U., Esper, J., Frank, D., Nicolussi, K., and Schmidhalter, M. (2005). A 1052-year tree-ring proxy for Alpine summer temperatures. Climate Dynamics 25, 141153.Google Scholar
Carrión, J.S., Andrade, A., Bennett, K.D., Navarro, C., and Munuera, M. (2001). Crossing forest thresholds: inertia and collapse in a Holocene sequence from south-central Spain. Holocene 11, 6 635653.Google Scholar
Carrión, J.S., Fernández, S., González-Sampériz, P., Gil-Romera, G., Badal, E., Carrión-Marco, Y., López-Merino, L., López-Sáez, J.A., Fierro, E., and Burjachs, F. (2010). Expected trends and surprises in the Lateglacial and Holocene vegetation history of the Iberian Peninsula and Balearic Islands. Review of Palaeobotany and Palynology 162, 458476.Google Scholar
Carrión, J.S., Fernández, S., González-Sampériz, P., López-Merino, L., Peña, L., Burjachs, F., López-Sáez, J.A., García-Antón, M., Carrión Marco, Y., Uzquiano, P., Postigo, J.M., Barrón, E., Allué, E., Badal, E., Dupré, M., Fierro, E., Munuera, M., Rubiales, J.M., García Amorena, I., Jiménez Moreno, G., Gil Romera, G., Leroy, S., García-Martínez, M.S., Montoya, E., Fletcher, W., Yll, E., Vieira, M., Rodríguez-Ariza, M.O., Anderson, S., Peñalba, C., Gil García, M.J., Pérez Sanz, A., Albert, R.M., Díez, M.J., Morales-Molino, C., Gómez Manzaneque, F., Parra, I., Ruiz Zapata, B., Riera, S., Zapata, L., Ejarque, A., Vegas, T., Rull, V., Scott, L., Abel Schaad, D., Andrade, A., Manzano, S., Navarro, C., Pérez Díaz, S., Moreno, E., Hernández-Mateo, L., Sánchez Baena, J.J., Riquelme, J.A., Iglesias, R., Franco, F., Chaín, C., Figueiral, I., Grau, E., Matos, M., Jiménez Espejo, F., Valle-Hernández, M., Rivas-Carballo, R., Arribas, A., Garrido, G., Muñiz, F., Finlayson, G., Finlayson, C., Ruiz, M., Pérez Jordá, G., and Miras, Y. (2012). Paleoflora y Paleovegetación de la Península Ibérica e Islas Baleares: Plioceno-Cuaternario. Ministerio de Economía y Competitividad, Madrid.Google Scholar
Connor, S.E., Araújo, J., van der Knaap, W.O., and van Leeuwen, J.F.N. A long-term perspective on biomass burning in the Serra da Estrela, Portugal. Quaternary Science Reviews 55, (2012). 114124.CrossRefGoogle Scholar
Costa, M., Morla, C., and Sainz, H. (1997). Los bosques ibéricos. Una interpretación geobotánica. Planeta, Barcelona.Google Scholar
Edvardsson, J., Leuschner, H.H., Linderson, H., Linderholm, H.W., and Hammarlund, D. South Swedish bog pines as indicators of Mid-Holocene climate variability. Dendrochronologia 30, (2012). 93103.Google Scholar
Farjon, A. (1984). Pines: drawings and descriptions of the genus. Brill, E.J., Backhuys, W. Leiden, the Netherlands.Google Scholar
Fernández, A., Génova, M., Creus, J., and Gutiérrez, E. (1996). Dendroclimatological investigation covering the last 300 years in Central Spain. Dean, J.S., Meko, D.M., and Swetnam, T.W. Tree Rings, Environment and Humanity. Radiocarbon. University of Arizona Press, Tucson. 181190.Google Scholar
Franco, J.A. (1986). Pinus L. Castroviejo, S., Laínz, M., López, G., Montserrat, P., Muñoz, F., Paíva, J., and Villar, L. Flora Iberica. Real Jardín Botánico, C.S.I.C., Madrid, Spain. 168174.Google Scholar
Franco-Múgica, F. (1995). Estudio palinológico de turberas holocenas en el sistema central: reconsturcción paisajística y acción antrópica. Ph.D. Thesis Universidad Autónoma, Madrid, Spain.Google Scholar
Franco-Múgica, F. (2009). El análisis polínico en la reconstrucción del paisaje vegetal. Génova, M., Gómez Manzaneque, F., and Morla, C. Los bosques de Gredos a través del tiempo. Junta de Castilla y León, Valladolid.Google Scholar
Franco-Múgica, F., García-Antón, M., and Sainz-Ollero, H. (1997). Impacto antrópico y dinámica de la vegetación durante los últimos 2000 años BP en la vertiente septentrional de la Sierra de Gredos: Navarredonda (Ávila, España). Révue de Paléobiologie de Genève 16, 1 2945.Google Scholar
Franco-Múgica, F., García-Antón, M., and Sainz-Ollero, H. (1998). Vegetation dynamics and human impact in the Sierra de Guadarrama, Central System, Spain. The Holocene 8, 1 6982.CrossRefGoogle Scholar
García, L., and Guindeo, A. (1988). Anatomía e identificación de las maderas de coníferas españolas. AITIM, Madrid. (142 pp.)Google Scholar
García-Amorena, I., Rubiales, J.M., Moreno, E., Iglesias, R., and Gómez Manzaneque, F. (2011). New macrofossil evidence of Pinus nigra Arnold on the Northern Iberian Meseta during the Holocene. Review of Palaeobotany and Palynology 163, 281288.Google Scholar
García-Antón, M., Franco-Múgica, F., Morla-Juaristi, C., and Maldonado-Ruiz, F.J. (2011). The biogeographical role of Pinus forest on the Northern Spanish Meseta: a new Holocene sequence. Quaternary Science Reviews 30, 757768.Google Scholar
Génova, M. (2000). Anillos de crecimiento y años característicos en el Sistema Central (España) durante los últimos cuatrocientos años. Boletin de la Real Sociedad Historia Natural (Seccion Biologia) 96, 1-2 3342.Google Scholar
Génova, M. (2009). Cronologías milenarias de anillos de crecimiento. Génova, M., Gómez Manzaneque, F., and Morla, C. Los bosques de Gredos a través del tiempo. Junta de Castilla y León, Valladolid.Google Scholar
Génova, M., and Moya, P. (2012). Dendroecological analysis of relict pine forests in the centre of the Iberian Peninsula. Biodiversity and Conservation 21, 29492965.Google Scholar
Génova, M., Gómez Manzaneque, F., and Regato, P. (1988). Sobre los pinares relictos de la sierra de Gredos (Ávila). Actas del Simposio Internacional de Botánica Pius Font i Quer II. 439442.Google Scholar
Génova, M., Fernández Cancio, A., and Creus, J. (1993). Diez series medias de anillos de crecimiento en los sistemas Carpetano e Ibérico. Investigación agraria. Sistemas y Recursos Forestales 2, 151172.Google Scholar
Génova, M., Gómez Manzaneque, F., and Morla, C. (2009). Los bosques de Gredos a través del tiempo. Junta de Castilla y León, Valladolid.Google Scholar
Gómez Manzaneque, F. La cubierta vegetal y la flora. Génova, M., Gómez Manzaneque, F., and Morla, C. (2009). Los bosques de Gredos a través del tiempo. Junta de Castilla y León, Valladolid.Google Scholar
Grudd, H. (2008). Torneträsk tree-ring width and density AD 500–2004: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Climate Dynamics 31, 843857.Google Scholar
Gunnarson, B.E. (2008). Temporal distribution pattern of subfossil wood in central Sweden: perspective on Holocene humidity fluctuations. The Holocene 18, 569577.Google Scholar
Gunnarson, B.E., and Linderholm, H.W. (2002). Low frequency climate variation in central Scandinavia since the 10th century inferred from tree rings. The Holocene 12, 667671.Google Scholar
Holmes, R.L. (1983). Computer assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43, 6978.Google Scholar
Linderholm, H.W., Moberg, A., and Grudd, H. (2002). Peatland pine as climate indicators? A regional comparison of the climate influence on Scots pine growth in Sweden. Canadian Journal of Forest Research 32, 14001410.Google Scholar
López-Merino, L., López-Sáez, J.A., Alba-Sánchez, F., Pérez-Díaz, S., and Carrión, J.S. (2009). 2000 years of pastoralism and fire shaping high-altitude vegetation of Sierra de Gredos in central Spain. Review of Palaeobotany and Palynology 158, 4251.Google Scholar
López-Saez, J.A., Blanco-Gonzalez, A., López-Merino, L., Ruiz-Zapata, M.B., Dorado-Valiño, M., Perez-Diaz, S., Valdeolmillos, A., and Burjachs, F. (2009). Landscape and climatic changes during the end of the Late Prehistory in the Ambles Valley (Avila, central Spain), from 1200 to 400 cal BC. Quaternary International 200, 90101.Google Scholar
López-Sáez, J.A., López-Merino, L., Alba-Sánchez, F., Pérez-Díaz, S., Abel-Schaad, D., and Carrión, J.S. (2010). Late Holocene ecological history of Pinus pinaster forests in the Sierra de Gredos of central Spain. Plant Ecology 206, 195209.Google Scholar
López-Sáez, J.A., Abel-Shaad, D., Pérez-Díaz, S., Blanco González, A., Alba-Sánchez, F., Dorado, M., Ruíz Zapata, B., Gil-García, M.J., Gómez González, C., and Franco Múgica, F. (2014). Vegetation history, climate and human impact in the Spanish Central System over the last 9000 years. Quaternary International 353, 98122.CrossRefGoogle Scholar
Moir, A.K., and Leroy, S.A.G. (2011). Role of substrate on the dendroclimatic response of Scots pine from varying elevations in northern Scotland. Canadian Journal of Forest Research 41, 822838.Google Scholar
Moir, A.K., Leroy, S.A.G., Brown, D., and Collins, P.E.F. (2010). Dendrochronological evidence for a lower water-table on peatland around 3200–3000 BC from subfossil pine in northern Scotland. The Holocene 20, 931942.Google Scholar
Morales-Molino, C., and García-Antón, M. (2014). Vegetation and fire history since the last glacial maximum in an inland area of the western Mediterranean Basin (Northern Iberian Plateau, NW Spain). Quaternary Research 81, 6377.Google Scholar
Morla, C., and García, R. (2009). Gredos y el interés de su pasado forestal. Génova, M., Gómez Manzaneque, F., and Morla, C. Los bosques de Gredos a través del tiempo. Junta de Castilla y León, Valladolid.Google Scholar
Pausas, J.G. (2015). Evolutionary fire ecology: lessons learned from pines. Trends in Plant Science 20, 318324.Google Scholar
Pérez, F.F., and Boscolo, R. (2010). Clima en España: pasado, presente y futuro. Informe de Evaluación del Cambio Climático Regional. (Madrid)Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., and van der Plicht, J. (2013). IntCal13 and MARINE13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 4 18691887.CrossRefGoogle Scholar
Richter, K., Eckstein, D., and Holmes, R.L. (1991). The dendrochronological signal of pine trees (Pinus spp.) in Spain. Tree-Ring Bulletin 51, 113.Google Scholar
Rinn, F. (2005). TSAPWin: time series analysis and presentation for dendrochronology and related applications, version 0.53: user reference. Heidelberg. Google Scholar
Rubiales, J.M., García-Amorena, I., Génova, M., Gómez Manzaneque, F., and Morla, C. (2007). The Holocene history of highland pine forests in a submediterranean mountain: the case of Gredos mountain range (Iberian Central range, Spain). Quaternary Science Reviews 26, 17591770.CrossRefGoogle Scholar
Rubiales, J.M., García Amorena, I., García Álvarez, S., and Gómez Manzaneque, F. (2008). The Late Holocene extinction of Pinus sylvestris in the West of the Cantabrian Range. Journal of Biogeography 35, 18401850.Google Scholar
Rubiales, J.M., García-Amorena, I., Hernández, L., Génova, M., Martínez, F., Gómez Manzaneque, F., and Morla, C. (2010). Late Quaternary dynamics of pinewoods in the Iberian mountains. Review of Palaeobotany and Palynology 162, 476491.Google Scholar
Rubiales, J.M., Ezquerra, F.J., Muñoz Sobrino, C., Génova, M., Gil, L., Ramil Rego, P., and Gómez-Manzaneque, F. (2012). Holocene distribution of woody taxa at the westernmost limit of the Circumboreal/Mediterranean boundary: evidence from plant macrofossils. Quaternary Science Reviews 33, 7483.Google Scholar
Rubiales, J.M., Morales-Molino, C., García, Álvarez S., and García Antón, M. (2012). Negative responses of highland pines to anthropogenic activities in inland Spain: a palaeoecological perspective. Vegetation History and Archaeobotany 21, 397412.Google Scholar
Ruiz de la Torre, J., (2002). Mapa forestal de España: memoria general. Escala 1:1.000.000 Organismo Autónomo Parques Nacionales. D.L., Madrid, 554 pp.Google Scholar
Ruiz-Zapata, M.B., Gil-García, M.J., Dorado, M., Andrade, A., Martín, T., and Valdeolmillos, A. (1997). Vegetación y paleoambientes en el Sistema Central español. Rodríguez-Vidal, J. Cuaternario Ibérico. AEQUA, Huelva. 248260.Google Scholar
Ruiz-Zapata, M.B., Carrasco, R.M., Gil-García, M.J., Pedraza, J., Razola, L., Domínguez Villar, D., and Gallardo, J.L. (2011). Dinámica de la vegetación durante el Holoceno en la Sierra de Gredos (Sistema Central Español). Boletín de la Real Sociedad Española de Historia Natural (Sección Geología) 105, 109123.Google Scholar
Rydval, M., Larsson, L.Å., McGlynn, L., Gunnarson, B.E., Loader, N.J., Young, G.H., and Wilson, R. (2014). Blue intensity for dendroclimatology: should we have the blues? Experiments from Scotland. Dendrochronologia 32, 191204.Google Scholar
Sánchez Goñi, M.F., and Hannon, G.E. (1999). High-altitude vegetational pattern on the Iberian Mountain Chain (north-central Spain) during the Holocene. The Holocene 9, 3957.Google Scholar
Schweingruber, F. (1990). Anatomy of European woods. WSL/FNP, Paul Haupt Berne & Stuttgart Publishers, Stuttgart. (800 pp.)Google Scholar
Stevenson, A.C. (2000). The Holocene forest history of the Montes Universales, Teruel, Spain. The Holocene 10, 603610.Google Scholar
Stuiver, M., and Reimer, P.J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.Google Scholar
Telford, R.J., Heegaard, E., and Birks, H.J.B. (2004). The intercept is a poor estimate of a calibrated radiocarbon age. The Holocene 14, 296298.Google Scholar
Vernet, J.L., Ogererau, P., Figueireal, I., Machado Yanes, C., and Uzquiano, P. (2001). Guide d'identification des charbons de bois préhistoriques et récents. Sud-Ouest de l'Europe: France, Péninsule ibérique et Iles Canaries. CNRS Editions, Paris.Google Scholar
Wilson, R., Loader, N.J., Rydval, M., Patton, H., Frith, A., Mills, C.M., Crone, A., Edwards, C., Larsson, L., and Gunnarson, B.E. (2012). Reconstructing Holocene climate from tree rings—the potential for a long chronology from the Scottish Highlands. The Holocene 22, 311.Google Scholar