Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T12:06:23.807Z Has data issue: false hasContentIssue false

Late Holocene glacial and periglacial evolution in the upper Orco Valley, northwestern Italian Alps

Published online by Cambridge University Press:  20 January 2017

Abstract

The sediments present in some areas of the Orco Valley provide indications on climatic variations that occurred during the last 6000 years on the southern slopes of the Alps. In particular, distribution and ages of peat layers help define periods and extent of glacial fluctuation in the last 2200 years. Sampling of soils involved in periglacial processes provided a basis for development of a chronological framework of late Holocene environmental change. The data indicate a trend toward cooler climate in the second half of the Holocene. A strong relationship exists between phases of River Po flooding and expansion/retreat phases of the Swiss glaciers: major glacial advances were coeval with periods of intense flooding of the River Po, whereas the phases of glacial retreat coincided with periods of little flooding of the Po. Only in three cases do relationships between glacier activity and floods show weak correlations; two of the cases relate to the warmest periods in approximately the last 2200 years, while the third is the present period. Paleoclimatic evidence from the study region indicates the relatively warm Roman Period between about 2200 and 1900 cal yr BP appears to better represent modern conditions than does the Medieval Warm Period.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armando, E., Baroni, C., Meneghel, M., and Zanon, G. Relazioni della campagna glaciologica 2003. Geografia Fisica e Dinamica Quaternaria 27, 2 (2004). 167225.Google Scholar
Baroni, C., and Carton, A. Vedretta di Pisgrana (Gruppo dell'Adamello). Geomorfologia e variazioni oloceniche della fronte. Natura Bresciana, Annali Museo Civico Scienze Naturali Brescia, 26, (1991). 109115.Google Scholar
Camuffo, D., and Enzi, S. Climatic features during the Spörer and Maunder Minima. Franzel, B. Special Issue: ESF Project “European Palaeoclimate and Man”. Paläoklimaforschung-Palaeoclimate Research 16, (1995). 106124.Google Scholar
Caramiello, R., Siniscalco, C., Potenza, A., Mercalli, L., Allegri, L., Manfri, L., and Proposito, A. Pollen analysis and radiocarbon dating of a peatbog (Pian di Nel, 2256 m) in Orco Valley, Western Alps, Italy. Il Quaternario-Italian Journal of Quaternary Science 7, 1 (1994). 91102.Google Scholar
Calderoni, G., Guglielmin, M., and Tellini, C. Radiocarbon dating and postglacial evolution, Upper Valtellina and Livignese area (Sondrio, Central Italian Alps). Permafrost and Periglacial Processes 9, (1998). 275284.3.0.CO;2-U>CrossRefGoogle Scholar
Deline, P., and Orombelli, G. Glacier fluctuations in the western Alps during the Neoglacial, as indicated by the Miage morainic amphiteatre (Mont Blanc massif, Italy). Boreas 34, (2005). 456467.CrossRefGoogle Scholar
Geyh, M.A., Benzler, J.H., and Roeschmann, G. Problems of dating Pleistocene and Holocene soils by radiometric methods. Yaalon, D.H. Paleopedology: Origin, Nature and Dating of Paleosols”. (1971). Israel Universities Press, Jerusalem. 6375.Google Scholar
Geyh, M.A., Rõetlisberger, F., and Gellatly, A. Reliability tests and interpretation of 14C dates from paleosols in glacier environments. Zeitschrift für Gletschekundes und Glazialgeologie 21, (1985). 275281.Google Scholar
Giraudi, C. Late Holocene alluvial events in the Central Apennines (Italy). The Holocene 15, 5 (2005). 769774.CrossRefGoogle Scholar
Giraudi, C. Middle to Late Holocene glacial variations, periglacial processes and alluvial sedimentation on the higher Apennine massifs (Italy). Quaternary Research 64, (2005). 176184.CrossRefGoogle Scholar
Hoefer, H. Die relative Lage der Firnlinie. Petermanns Geographische Mitteilungen 68, (1922). 57 ppGoogle Scholar
Holzhauser, H., Magny, M., and Zumbühl, H.J. Glacier and lake-level variations in west-central Europe over the last 3500 years. The Holocene 15, 6 (2005). 789801.CrossRefGoogle Scholar
Joerin, U.E., Stocker, T.F., and Schlüchter, C. Multicentury glacier fluctuations in the Swiss Alps during the Holocene. The Holocene 16, 5 (2006). 697704.CrossRefGoogle Scholar
Magny, M. Holocene climatic variability as reflected by mid-European lake-level fluctuations, and its probable impact on prehistoric human settlements. Quaternary International 113, (2004). 6579.CrossRefGoogle Scholar
Matthews, J.A. Radicarbon dating of buried soils with particular reference to Holocene solifluction. Solifluction and Climatic Variation in the Holocene. Paläoklimaforschung-Palaeoclimate Research 11, (1993). 309324.Google Scholar
Mattirolo, E., Novarese, V., Franchi, S., and Stella, A. Foglio 41, Gran Paradiso, della Carta Geologica d'Italia a scala 1:100.000. (1910). Servizio Geologico d'Italia, Google Scholar
Mercalli, L., and Cat Berro, D. L'evento alluvionale del 13–17 Ottobre 2000 nel bacino del Po: analisi pluviometrica. Nimbus, Anno IV 3–4, (2001). 3340.Google Scholar
Mortara, G., Orombelli, G., Pelfini, M., and Tellini, C. Suoli e suoli sepolti olocenici per la datazione di eventi geomorfologici in ambiente alpino: alcuni esempi tratti da indagini preliminari in Val d'Aosta. Il Quaternario-Italian Journal of Quaternary Sciences 5, 2 (1992). 135148.Google Scholar
Orombelli, G., and Pelfini, M. Una fase di avanzata glaciale nell'Olocene superiore, precedente alla Piccola Glaciazione, nelle Alpi Central. Rendiconti Società Geologica Italiana 8, (1985). 1720.Google Scholar
Orombelli, G., and Mason, P. Holocene glacier fluctuations in the Italian alpine region. Glacier Fluctuation during the Holocene. Paläoklimaforschung-Palaeoclimate Research 24, (1997). 5965.Google Scholar
Scharpenseel, H.W., and Schiffmann, H. Soil radiocarbon analysis and soil dating. Geophysical Survey 3, (1977). 143158.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, W.J., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., and Spurk, M. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40, 3 (1998). 10411083.CrossRefGoogle Scholar