Published online by Cambridge University Press: 20 January 2017
Pollen and plant macrofossils preserved in lake sediment from Lake West Okoboji, Dickinson County, Iowa, indicate how the vegetation of that area changed during the late glacial and postglacial. A closed coniferous forest, dominated by spruce and larch trees, produced the Picea-Larix pollen assemblage zone. Fir trees were a minor constituent of this forest; pine trees were probably absent. Black ash trees increased in abundance at Lake West Okoboji and by 13,500 yr ago were an important constituent of the forest. The sediment accumulation rate and the pollen influx were low throughout this time. Birch and alder pollen peaked in abundance approximately 11,800 yr ago. Pollen influx increased rapidly as birch and alder replaced coniferous trees on the uplands. A deciduous forest, containing abundant oak and elm trees, replaced the birch-alder-coniferous forest. This forest inhabited northwestern Iowa from approximately 11,000 to 9000 yr B.P. Nonarboreal species became prevalent between approximately 9000 and 7700 yr B.P. as prairie began to replace deciduous forest on the uplands. Charred remains of Amorpha canescens and other upland species attest to the presence of prairie fires as an aid in establishing prairie and destroying the forest. The pollen influx declined. The warmest, driest part of the postglacial occurred in northwestern Iowa from approximately 7700 to 3200 yr ago. Lake level fell 9 to 10 m, and prairie extended to the edge of the lake. Wet-ground weeds inhabited areas near lake level which were alternately flooded, then dry. Pollen influx was approximately 100 grains/cm2/yr during the driest time in this dry interval.
Deciduous trees, particularly oaks, returned after approximately 3200 yr B.P. Prairie continued to occupy the uplands but trees were more common in the lowlying wet areas. Settlement by Europeans in northwestern Iowa about 1865 is marked by an increase in weed pollen. Macrofossil deposition changed in 1910 in response to the stabilization of lake level.