Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T06:19:34.777Z Has data issue: false hasContentIssue false

The last interglacial sea-level high stand on the southern Cape coastline of South Africa

Published online by Cambridge University Press:  20 January 2017

Andrew S. Carr*
Affiliation:
Department of Geography, University of Leicester, University Road, Leicester LE1 7RH, UK
Mark D. Bateman
Affiliation:
Sheffield Centre for International Drylands Research, Department of Geography, University of Sheffield, Winter Street, Sheffield, S10 2TN, UK
David L. Roberts
Affiliation:
Council for Geoscience, PO Box 572, Bellville 7535, South Africa
Colin V. Murray-Wallace
Affiliation:
GeoQuEST Research Centre, School of Earth and Environmental Sciences, University of Wollongong, NSW, 2522, Australia
Zenobia Jacobs
Affiliation:
GeoQuEST Research Centre, School of Earth and Environmental Sciences, University of Wollongong, NSW, 2522, Australia
Peter J. Holmes
Affiliation:
Department of Geography, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*
*Corresponding author.E-mail address:[email protected] (A.S. Carr).

Abstract

The continental margin of southern South Africa exhibits an array of emergent marginal marine sediments permitting the reconstruction of long-term eustatic sea-level changes. We report a suite of optical luminescence ages and supplementary amino acid racemization data, which provide paleosea-level index points for three sites on this coastline. Deposits in the Swartvlei and Groot Brak estuaries display tidal inlet facies overlain by shoreface or eolian facies. Contemporary facies relations suggest a probable high stand 6.0-8.5 m above modern sea level (amsl). At Cape Agulhas, evidence of a past sea-level high stand comprises a gravel beach (ca. 3.8 m amsl) and an overlying sandy shoreface facies (up to 7.5 m amsl). OSL ages between 138±7 ka and 118±7 ka confirm a last interglacial age for all marginal marine facies. The high stand was followed by a sea-level regression that was associated with the accumulation of eolian dunes dating to between 122±7 ka and 113±6 ka. These data provide the first rigorous numerical age constraints for last interglacial sea-level fluctuations in this region, revealing the timing and elevation of the last interglacial high stand to broadly mirror a number of other far-field locations.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamiec, G., Aitken, M.J., (1998). Dose-rate conversion factors: update. Ancient TL 16, 3750.Google Scholar
Aitken, M.J., (1985). Thermoluminescence Dating. Academic Press, London. Google Scholar
Bassett, S.E., Milne, G.A., Mitrovica, J.X., Clark, P.U., (2005). Ice sheet and solid Earth influences on far-field sea-level histories. Science 309, 925928.CrossRefGoogle ScholarPubMed
Bateman, M.D., Catt, J.A., (1996). An absolute chronology for the raised beach deposits at Sewerby, East Yorkshire, U.K. Journal of Quaternary Science 11, 38395.3.0.CO;2-K>CrossRefGoogle Scholar
Bateman, M.D., Holmes, P.J., Carr, A.S., Horton, B.P., Jaiswal, M.K., (2004). Aeolianite and barrier dune construction spanning the last two glacial"interglacial cycles from the southern Cape coast, South Africa. Quaternary Science Reviews 23, 16811698.CrossRefGoogle Scholar
Bateman, M.D., Carr, A.S., Murray-Wallace, C.V., Holmes, P.J., Roberts, D.L., (2008). A dating inter-comparison study on Late Stone Age Midden deposits, South Africa. Geoarchaeology 23, 715741.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Fairbanks, R.G., (1990). U"Th ages obtained by mass spectrometry in corals from Barbados: sea-level during the past 130,000 years. Nature 346, 456458.CrossRefGoogle Scholar
Baxter, A.J., Meadows, M.E., (1999). Evidence for Holocene sea-level change at Verlorenvlei, Western Cape, South Africa. Quaternary International 56, 6579.CrossRefGoogle Scholar
B"tter-Jensen, L., Bulur, E., Duller, G.A.T., Murray, A.S., (2000). Advances in luminescence instrument systems. Radiation Measurements 32, 523528.CrossRefGoogle Scholar
Butzer, K.W., (2004). Coastal eolian sands, paleosols, and Pleistocene geoarchaeology of the Southwestern Cape, South Africa. Journal of Archaeological Science 31, 17431781.CrossRefGoogle Scholar
Carr, A.S., Bateman, M.D., Holmes, P.J., (2007). Developing a 150 ka luminescence chronology for the coastal dunes of the southern Cape, South Africa. Quaternary Geochronology 2, 110116.CrossRefGoogle Scholar
Compton, J.S., (2001). Holocene sea-level fluctuations inferred from the evolution of depositional environments of the southern Langebaan Lagoon salt marsh, South Africa. The Holocene 11, 395405.CrossRefGoogle Scholar
Compton, J.S., (2006). The mid-Holocene sea-level highstand at Bogenfels Pan on the southwest coast of Namibia. Quaternary Research 66, 303310.CrossRefGoogle Scholar
Cooper, J.A.G., (2001). Geomorphological variability among microtidal estuaries from the wave-dominated South African coast. Geomorphology 40, 99122.CrossRefGoogle Scholar
Cooper, J.A.G., Flores, R.M., (1991). Shoreline deposits and diagenesis resulting from two Late Pleistocene highstands near + 5 and + 6 metres, Durban, South Africa. Marine Geology 97, 325343.CrossRefGoogle Scholar
Cutler, K.B., Edwards, R.L., Taylor, F.W., Cheng, H., Adkins, J., Gallup, C.D., Cutler, P.M., Burr, G.S., Bloom, A.L., (2003). Rapid sea-level fall and deep-ocean temperature change since the last interglacial period. Earth and Planetary Science Letters 206, 253271.CrossRefGoogle Scholar
Duller, G.A.T., (2003). Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37, 161165.CrossRefGoogle Scholar
Ferranti, L., Antonioli, F., Mauz, B., Amorosi, A., Dai Pra, G., Mastronuzzi, G., Monaco, C., Orr", P., Pappalardo, M., Radtke, U., Renda, P., Romano, P., Sans", P., Verrubbi, V., (2006). Markers of the last interglacial sea-level highstand along the coast of Italy: tectonic implications. Quaternary International 145-146, 3054.CrossRefGoogle Scholar
Fleming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K., Chappell, J., (1998). Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth and Planetary Science Letters 163, 327342.CrossRefGoogle Scholar
Folk, R.L., Ward, W.C., (1957). Brazos River Bar, a study in the significance of grain size parameters. Journal of Sedimentary Petrology 27, 326.CrossRefGoogle Scholar
Frey, R.W., Howard, J.D., Pryor, W.A., (1978). Ophiomorpha"its morphologic, taxonomic, and environmental significance. Paleogeography Palaeoclimatology Palaeoecology 23, 199229.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., (1999). Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia. Part 1: experimental design and statistical models. Archaeometry 41, 339364.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., Yoshida, H., (2005). Error variation in OSL palaeodose estimates from single aliquots of quartz: a factorial experiment. Radiation Measurements 39, 289307.CrossRefGoogle Scholar
Gallup, C.D., Cheng, H., Taylor, F.W., Edwards, R.L., (2002). Direct determination of the timing of sea level change during Termination II. Science 295, 310313.CrossRefGoogle ScholarPubMed
Goedhart, M., (2007). Seismicity along the southern Cape Fold Belt, South Africa, association with geological structures, and early Holocene reactivation of the Kango Fault. Quaternary International 142, 167168.Google Scholar
Hearty, P.J., Hollin, J.T., Neumann, A.C., O"Leary, M.J., McCulloch, M., (2007). Global sea-level fluctations during the Last Interglaciation (MIS 5e). Quaternary Science Reviews 26, 20902112.CrossRefGoogle Scholar
Hendey, Q.B., Volman, T.P., (1986). Last interglacial sea-levels and coastal caves in the Cape Province, South Africa. Quaternary Research 25, 189198.CrossRefGoogle Scholar
Illenberger, W.K., (1996). The geomorphic evolution of the Wilderness dune cordons, South Africa. Quaternary International 33, 1120.CrossRefGoogle Scholar
Jacobs, Z., Wintle, A.G., Duller, G.A.T., (2003). Optical dating of dune sand from Blombos Cave, South Africa: I"multiple grain data. Journal of Human Evolution 44, 599612.CrossRefGoogle ScholarPubMed
Kaufman, D.S., Manley, W.F., (1998). A new procedure for determining dl amino acid ratios in fossils using reverse phase liquid chromatography. Quaternary Science Reviews 17, 9871000.CrossRefGoogle Scholar
Kaufman, A., Broecker, W.S., Ku, T.L., Thurber, D.L., (1971). The status of U-series methods of mollusk dating. Geochimica et Cosmochimica Acta 35, 11551183.CrossRefGoogle Scholar
Kukla, G.J., (2000). The Last Interglacial. Science 287, 987988.CrossRefGoogle Scholar
Lambeck, K., Chappell, J., (2001). Sea-level change through the last glacial cycle. Science 292, 679686.CrossRefGoogle ScholarPubMed
Lambeck, K., Esat, T.M., Potter, E.K., (2002). Links between climate and sea-levels during the past three million years. Nature 419, 199206.CrossRefGoogle ScholarPubMed
Leeder, M.R., (1982). Sedimentology Process and Product. Unwin Hyman, London. Google Scholar
Lisiecki, L.E., Raymo, M.E., (2005). A Pliocene"Pleistocene stack of 57 globally distributed benthic ?18O records. Paleoceanography 20, PA1003 10.1029/2004PA001071.Google Scholar
Malan, J.A., (1990). The stratigraphy and sedimentology of the Bredasdorp Group, southern Cape Province. Unpublished MSc Thesis, University of Cape Town, . Google Scholar
Marean, C.W., Bar-Matthews, M., Bernatchez, J., Fisher, E., Goldberg, P., Herries, A.I.R., Jacobs, Z., Jerardino, A., Karkanas, P., Minichillo, T., Nilssen, P.J., Thompson, E., Watts, I., Williams, H.M., (2007). Early Human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449, 905909.CrossRefGoogle ScholarPubMed
Marker, M.E., (1987). A note on marine benches of the southern Cape. South African Journal of Geology 90, 120124.Google Scholar
Marker, M.E., Holmes, P.J., (2005). Landscape evolution and landscape sensitivity: the case of the southern Cape. South African Journal of Science 101, 5360.Google Scholar
Marsh, R.E., Prestwich, W.V., Rink, W.J, Brennan, B.J., (2003). Monte Carlo determinations of the beta dose rate to tooth enamel. Radiation Measurements 35, 609616.CrossRefGoogle Scholar
Martin, A.R.H., (1962). Evidence relating to the Quaternary history of the Wilderness lakes. Transactions of the Geological Society of South Africa 65, 1945.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J, Moore, T.C., Shackleton, N.J., (1987). Age dating and the Orbital Theory of the Ice Ages " development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27, 129.CrossRefGoogle Scholar
Massari, F., Parea, G.C., (1988). Progradational gravel beach sequences in a moderate- to high-energy, microtidal marine environment. Sedimentology 35, 881913.CrossRefGoogle Scholar
Maud, R.R., (1968). Quaternary Geomorphology and soil formation in coastal Natal. Zeitschrift f"r Geomorphologie N.F. Suppl. 7, 135165.Google Scholar
McLaren, S.J., Rowe, P.J., (1996). The reliability of uranium-series mollusc dates from the Western Mediterranean basin. Quaternary Science Reviews 15, 709717.CrossRefGoogle Scholar
Mejdahl, V., (1979). Thermoluminescence dating"Beta-dose attenuation in quartz grains. Archaeometry 21, 6172.CrossRefGoogle Scholar
Muhs, D.R., (2002). Evidence for the timing and duration of the last interglacial period from high-precision uranium-series ages of corals on tectonically stable coastlines. Quaternary Research 58, 3640.CrossRefGoogle Scholar
Muhs, D.R., Wehmiller, J.F., Simmons, K.R., York, L.L., (2004). Quaternary sea-level history of the United States. Gillespie, A.R., Porter, S.C., Atwater, B.F., The Quaternary Period in the United States: Developments in Quaternary Science 1. 147183.Google Scholar
Munsell Color, , (1994). Munsell Soil Color Charts. Macbeth, New Windsor. Google Scholar
Murray, A.S., Wintle, A.G., (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., (2003). The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.CrossRefGoogle Scholar
Murray-Wallace, C.V., (2000). Quaternary coastal aminostratigraphy: Australian data in global context. Goodfriend, G.A., Perspectives in Amino Acid and Protein Geochemistry. Oxford University Press Oxford, UK., 279300.Google Scholar
Murray-Wallace, C.V., (2002). Pleistocene coastal stratigraphy, sea-level highstands and neotectonism of the southern Australian passive continental margin"a review. Journal of Quaternary Science 17, 469489.CrossRefGoogle Scholar
Murray-Wallace, C.V., Belperio, A.P., (1991). The last interglacial shoreline in Australia: a review. Quaternary Science Reviews 10, 441461.CrossRefGoogle Scholar
(1990). Non-affiliated Soil Analysis Working Committee. Handbook of Standard Soil Testing Methods for Advisory Purposes. Soil Science Society, Pretoria. Google Scholar
O"Leary, M.J., Hearty, P.J., McCulloch, M.T., (2008). Geomorphic evidence of major sea-level fluctuations during marine isotope substage-5e, Cape Cuvier, Western Australia. Geomorphology 102, 595602.CrossRefGoogle Scholar
Overpeck, J.T., Otto-Bliesner, B.L., Miller, G.H., Muhs, D.R., Alley, R.B., Kiehl, J.T., (2006). Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311, 17471750.CrossRefGoogle ScholarPubMed
Prescott, J.R., Hutton, J.T., (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Ramsay, P.J., Cooper, J.A.G., (2002). Late Quaternary sea-level change in South Africa. Quaternary Research 57, 8290.CrossRefGoogle Scholar
Reddering, J.S.V., (1983). An inlet sequence produced by the migration of a small microtidal inlet against longshore drift: the Keurbooms Inlet, South Africa. Sedimentology 30, 201218.CrossRefGoogle Scholar
Roberts, D., Berger, L.R., (1997). Last interglacial human footprints from South Africa. South African Journal of Science 93, 349350.Google Scholar
Roberts, D.L., Bateman, M.D., Murray-Wallace, C.V., Carr, A.S., Holmes, P.J., (2008). Last interglacial fossil elephant trackways in coastal eolianites, Still Bay, South Africa. Palaeogeography Palaeoclimatology Palaeoecology 257, 261279.CrossRefGoogle Scholar
Roberts, D.L., Bateman, M.D., Murray-Wallace, C.V., Carr, A.S., Holmes, P.J., (2009). West Coast Dune Plumes: climate driven contrasts in dunefield morphogenesis along the western and southern South African Coasts. Palaeogeography Palaeoclimatology Palaeoecology 271, 3448.CrossRefGoogle Scholar
Short, A.D., (1984). Beach and nearshore facies: Southeast Australia. Marine Geology 60, 261282.CrossRefGoogle Scholar
Siesser, W.G., Rogers, J., (1970). An investigation of the suitability of four methods used in routine carbonate analysis of marine sediments. Deep Sea Research 18, 135139.Google Scholar
Speed, R.C., Cheng, H., (2004). Evolution of marine terraces and sea level in the last interglacial, Cave Hill, Barbados. Geological Society of America Bulletin 116, 219232.CrossRefGoogle Scholar
Stirling, C.H., Esat, T.M., McCulloch, M.T., Lambeck, K., (1995). High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the last interglacial. Earth and Planetary Science Letters 135, 115130.CrossRefGoogle Scholar
Stirling, C.H., Esat, T.M., Lambeck, K., McCulloch, M.T., (1998). Timing and duration of the last interglacial: evidence for a restricted interval of widespread coral reef growth. Earth and Planetary Science Letters 160, 745762.CrossRefGoogle Scholar
Tankard, A.J., (1976). The Pleistocene history and coastal morphology of the Ysterfontein-Elands Bay area, Cape Province. Annals of the South African Museum 69, 73119.Google Scholar
Tomazelli, L.J., Dillenburg, S.R., (2007). Sedimentary facies and stratigraphy of a last interglacial coastal barrier in south Brazil. Marine Geology 244, 3345.CrossRefGoogle Scholar
Tucker, M., (1988). Techniques in Sedimentology. Blackwell, Oxford. Google Scholar
(2006). US Department of Commerce. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 2-Minute Gridded Global Relief Data (ETOPO2v2) http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html.Google Scholar
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E., Labracherie, M., (2002). Sea-level and deep water temperature changes derived from benthonic foraminifera isotopic records. Quaternary Science Reviews 21, 295305.CrossRefGoogle Scholar
Waelbroeck, C., Frank, N., Jouzel, J., Parrenin, F., Masson-Delmotte, V., Genty, D., (2008). Transferring radiometric dating of the last interglacial sea level highstand to marine and ice core records. Earth and Planetary Science Letters 265, 183194.CrossRefGoogle Scholar
Woodroffe, S.A., Horton, B.P., (2005). Holocene sea-level changes in the Indo-Pacific. Journal of Asian Earth Sciences 25, 2943.CrossRefGoogle Scholar
Woodroffe, C.D., Murray-Wallace, C.V., Bryant, E.A., Brooke, B., Heijnis, H., Price, D.M., (1995). Late Quaternary sea-level highstands in the Tasman Sea " evidence from Lord-Howe Island. Marine Geology 125, 6172.CrossRefGoogle Scholar
Young, R.W., Bryant, E.A., Price, D., (1993). Last interglacial sea levels on the South Coast of New South Wales. Australian Geographer 24, 7275.CrossRefGoogle Scholar
Supplementary material: PDF

Carr et al. Supplementary Material

Figure S1

Download Carr et al. Supplementary Material(PDF)
PDF 23.5 KB
Supplementary material: PDF

Carr et al. Supplementary Material

Figure S2

Download Carr et al. Supplementary Material(PDF)
PDF 65.2 KB
Supplementary material: PDF

Carr et al. Supplementary Material

Figure S3

Download Carr et al. Supplementary Material(PDF)
PDF 65.7 KB
Supplementary material: PDF

Carr et al. Supplementary Material

Table S1

Download Carr et al. Supplementary Material(PDF)
PDF 13.3 KB
Supplementary material: PDF

Carr et al. Supplementary Material

Table S2

Download Carr et al. Supplementary Material(PDF)
PDF 10.5 KB