Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T06:26:30.076Z Has data issue: false hasContentIssue false

The last 7500 cal yr B.P. of westerly rainfall in Central Chile inferred from a high-resolution pollen record from Laguna Aculeo (34°S)

Published online by Cambridge University Press:  20 January 2017

Rodrigo Villa-Martínez
Affiliation:
Laboratorio de Palinología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
Carolina Villagrán
Affiliation:
Laboratorio de Palinología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
Bettina Jenny
Affiliation:
Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland

Abstract

We report multiproxy analyses of a sediment core obtained from Laguna Aculeo that spans the past 7500 years. Laguna Aculeo (33°50′S, 70°55′W) is one of the few natural inland lakes located in the Mediterranean zone of Central Chile, near the northern margin of the influence of the southern westerlies. The record shows elevated pollen counts of halophytes and seasonally drying of the lake basin prior to 5700 cal yr B.P., indicating severe aridity and warmer-than-present conditions. This was followed by the establishment of a fresh-water lake, along with an increase in arboreal and herbaceous plant diversity between 5700 and 3200 cal yr B.P. An intensification of this trend started at 3200 cal yr B.P., along with the abrupt decrease of halophytes until 100 cal yr B.P. Within this humid period, pollen accumulation rates show large-amplitude fluctuations, coeval with numerous turbidite layers, suggesting a highly variable and torrential rainfall pattern. This intense and variable precipitation regime is probably associated with the El Niño–Southern Oscillation (ENSO) phenomenon. We suggest that the modern Mediterranean climate of Central Chile was established at ∼3200 cal yr B.P. Paleovegetation and paleolimnological changes starting at 100 cal yr B.P. correlate with documented human activity surrounding the lake.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceituno, P., (1988). On the functioning of the southern oscillation in the South American sector. I. Surface climate. Monthly Weather Review 116, 505524.Google Scholar
Aceituno, P., (1990). Anomalías climáticas en la Región Sudamericana durante los extremos de la Oscilación Austral. Revista de Geofísica 32, 6578.Google Scholar
Aceituno, P., Fuenzalida, H., and Rosenblüth, B. (1993). Climate along the extratropical west coast of South America. in: Mooney, H., Fuentes, E., Kromberg, B.I. (Eds.), Earth systems responses to global change, Academic Press, London., pp. 6170.Google Scholar
Almeyda, E., and Saez, F., (1958). Recopilación de datos climáticos de Chile y mapas sinópticos respectivos. Ministerio de Agricultura, Chile.Google Scholar
Cabrera, S., and Montecinos, V., (1982). Eutrophy in Lake Aculeo, Chile. Plant & Soil 67, 377387.Google Scholar
Cane, M., and Clement, A.C., (1999). A role for the tropical Pacific coupled ocean–atmosphere system on Milankovitch and Millenial timescales. II. Global impacts. Clark, P.U., Webb, R.S., and Keigwin, L.D. “Mechanisms of Global Climate Change at Millennial Time Scales,”. Geophysical Monograph. American Geophysical Union, Washington, D.C. 373383.Google Scholar
Clement, A.C., and Cane, M., (1999). A role for the tropical Pacific coupled ocean–atmosphere system on Milankovitch and Millenial timescales. I. A modeling study of trropical Pacific variability. Clark, P.U., Webb, R.S., and Keigwin, L.D. Mechanisms of global climate change at millennial time scales. Geophyiscal Monograph. American Geophysical Union, Washington, D.C. 363371.Google Scholar
Faegri, K., and Iversen, J., (1989). Textbook of Pollen Analysis. Balkena, Amsterdam.Google Scholar
Grimm, E., (1987). CONISS: A Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335.Google Scholar
Heusser, C.J., (1983). Quaternary pollen record from Laguna de Tagua Tagua, Chile. Science 219, 14291432.CrossRefGoogle Scholar
Heusser, C.J., (1990). Ice age vegetation and climate of subtropical Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 80, 107127.Google Scholar
Hutchinson, E., (1957). A Treatise on Limnology. Wiley, New York.Google Scholar
Jenny, B., Valero-Garces, B., Urrutia, R., Kelts, K., Veit, H., and Geyh, M., (2002). Moisture changes and fluctuations of the westerlies in mediterranean central Chile during the last 2000 years. the Laguna de Aculeo records (33°50 S). Quaternary International 87, 318.CrossRefGoogle Scholar
Jenny, B., Valero-Garcés, B., Villa-Martínez, R., Urrutia, R., Geyh, M., and Veit, H., (2002). Evidence for an early to mid-Holocene aridity in central Chile (34°S) related to the southern westerlies. the Laguna Aculeo record. Quaternary Research 58, 160170.Google Scholar
Lamy, F., Hebbeln, D., and Wefer, G., (1999). High-resolution marine record of climatic change in mid-latitude Chile during the last 28,000 years based on terrigenous sediment parameters. Quaternary Research 51, 8393.Google Scholar
Maldonado, A., and Villagrán, C., (2002). Paleoenvironmental changes in the semiarid coast of Chile (32°S) during the last 5500 14C years inferred from a swamp forest pollen record. Quaternary Research 58, 130138.Google Scholar
Marchant, M., Hebbeln, D., and Wefer, G., (1999). High resolution planktic foraminiferal record of the last 13,300 years from the upwelling area off Chile. Marine Geology 161, 115128.Google Scholar
Markgraf, V., (1998). Past climates of South America. Hobbs, J.E., Lindesay, J.A., and Bridgman, H.A. Climates of the southern continents: present, past and future. Wiley, Chichester. 249264.Google Scholar
Mc Glone, M.S., Kershaw, P., and Markgraf, V., (1992). El Niño/Southern Oscillation climatic variability in Australasian and South American paleoenvironmental records. Díaz, H.F., and Markgraf, V. El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation. Cambridge Univ. Press, Cambridge, UK. 728.Google Scholar
Miller, A., (1976). The climate of Chile. Schwerdtfeger, W. Climates of Central and South America. Elsevier, Amsterdam. 113145.Google Scholar
Reynolds, C., (1997). Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institute, Germany.Google Scholar
Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abott, M.B., Enfield, D.B., and Newman, J.H., (1999). An ∼15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science 283, 516520.Google Scholar
Rojas, G., (1991). Posibilidades de alimentación vegetal del Hombre de Cachipuy. Revista Chilena de Antropología 10, 2535.Google Scholar
Rundel, P., (1981). The matorral zone of central Chile. di Castri, F., Goodall, D., and Specht, R. Mediterranean-Type Shrublands. Elsevier, Amsterdam. 175201.Google Scholar
Rutlland, J., and Fuenzalida, H., (1991). Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation. International Journal of Climatology 11, 6376.Google Scholar
Sandweiss, D., Maasch, K., and Anderson, D., (1999). Transition in the middle Holocene. Science 283, 499500.Google Scholar
Sandweiss, D.H., Maasch, K.A., Burger, R.L., Richardson, J.B. III, Rollins, H.B., and Clement, A., (2001). Variation in Holocene El Niño frequencies: climate records and cultural consequences in ancient Perú. Geology 29, 603606.Google Scholar
Sandweiss, D.H., Richardson, J.B. III, Reitz, E.J., Rollins, H.B., and Maasch, K.A., (1996). Geoarchaeological evidence from Peru for a 5000 years B.P. onset of El Niño. Science 273, 15311533.CrossRefGoogle Scholar
Schmithüsen, J., (1956). Die räumliche Ordnung der chilenischen Vegetation. Bonner Geographische Abhandlungen 17, 186.Google Scholar
Stager, J., and Mayewsky, P., (1997). Abrupt early to mid Holocene climate transition registered at the Equator and the poles. Science 276, 13841386.CrossRefGoogle Scholar
Steig, E., (1999). Mid Holocene climate change. Science 286, 14851487.Google Scholar
Stockmarr, J., (1971). Tablets with spores used in absolute pollen analisys. Pollen & Spores 13, 615621.Google Scholar
Stuiver, M., and Reimer, P.J., (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.Google Scholar
Thomasson, K., (1963). Araucarian lakes. Acta Phytogeographica Suecica 47, 1139.Google Scholar
Tudhope, A.W., Chilcott, C.P., McCulloch, M.T., Cook, E.R., Chappell, J., Ellam, R.M., Lea, D.W., Lough, J.M., and Shimmield, G.B., (2001). Variability in the El Niño–Southern Oscillation through a glacial–interglacial cycle. Science 291, 15111517.CrossRefGoogle ScholarPubMed
Veit, H., (1996). Southern westerlies during the Holocene deduced from geomorphological studies in the Norte Chico, northern Chile (27°–33°S). Palaeogeography, Palaeoclimatology, Palaeoecology 123, 107119.Google Scholar
Vila, I., Barens, I., and Montecinos, V., (1987). Abundancia y distribución temporal del fitoplancton en el Embalse Rapel, Chile central. Revista Chilena de Historia Natural 60, 3755.Google Scholar
Villagrán, C., and Varela, J., (1990). Palynological evidence for increased aridity on the central Chilean coast during the Holocene. Quaternary Research 34, 198207.Google Scholar
Villa-Martinez, R. (1995). Reconstruccion paleoambiental del Holoceno de la costa de Chile central basada en análisis de polen en sedimentos de bosques pantanosos. Unpublished master's thesis, Universidad de Chile, Google Scholar
Villa-Martínez, R., and Villagrán, C., (1997). Historia de la vegetación de bosques pantanosos de la costa de Chile central durante el Holoceno medio y tardío. Revista Chilena de Historia Natural 70, 391401.Google Scholar
Villa-Martínez, R., Villagrán, C., Jenny, B. (in press). Pollen evidence for late Holocene climate variability at Laguna de Aculeo, central Chile (lat. 34° S). The Holocene Google Scholar