Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-03T01:16:03.371Z Has data issue: false hasContentIssue false

La Mesure des Variations Climatiques Continentales Application à la Période Comprise entre 130.000 et 90.000 Ans B. P.

Published online by Cambridge University Press:  20 January 2017

J.C. Duplessy
Affiliation:
Centre des Faibles Radioactivités, Centre National de la Recherche Scientifique, (91) Gif-sur-Yvette, France
J. Labeyrie
Affiliation:
Centre des Faibles Radioactivités, Centre National de la Recherche Scientifique, (91) Gif-sur-Yvette, France Service d'Electronique Physique, Centre d'Études Nucléaires de Saclay, (91) Gif-sur-Yvette, France
C. Lalou
Affiliation:
Centre des Faibles Radioactivités, Centre National de la Recherche Scientifique, (91) Gif-sur-Yvette, France
H.V. Nguyen
Affiliation:
Centre des Faibles Radioactivités, Centre National de la Recherche Scientifique, (91) Gif-sur-Yvette, France Service d'Electronique Physique, Centre d'Études Nucléaires de Saclay, (91) Gif-sur-Yvette, France

Abstract

Les mesures du rapport isotopique 18O/16O le long de l'axe de stalagmites soigneusement choisies donnent u̇n enregistrement climatique continental qui peut être comparé aux données de la paléoclimatologie océanique. Les âges des différentes couches de la stalagmite sont établis soit par la méthode du carbone 14 pour la période de 0 à 35.000 ans b.p., soit par le rapport 230Th/234U jusqu'à 300.000 ans b.p.

La validité de cette méthode est discutée et une application en est donée pour la période allant de 130.000 à 90.000 ans b.p.

Measurements of the isotopic ratio 18O/16O along the axis of carefully chosen stalagmites give a continental climatic record which can be compared to oceanic paleoclimatological data. Ages of stalagmite layers are established either by carbon 14 for the period 0 to 35,000 years b.p. or by 230Th/234U ratio until 300,000 years b.p.

The validity of this method is discussed and an application is given for the period 130,000 to 90,000 years b.p.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, J. W., Lang, E. J., and Potratz, H. A. (1956). Ratio of ionium to uranium in coral limestone. Science 124, 175.CrossRefGoogle ScholarPubMed
Boato, G., and Togliatti, V. (1960). Seasonal variation in the 18O content of meteoritic waters in the upper mediterranean basin. Summer course on nuclear geology, Varenna.Google Scholar
Broecker, W. S., and Olson, I. U. (1959). 14C dating of cave formations. National Speleological Society 21.Google Scholar
Broecker, W. S., and Thurber, D. L. (1965). Uranium series dating of corals and oolithes from Bahaman and Florida key Limestones. Science 149, 58.Google Scholar
Broecker, W. S., Thurber, D. L., Goddard, J., Ku, T. L., Matthews, R. K., and Mesolella, K. J. (1968). Milankovitch hypothesis supported by precise dating of coral reefs and deep sea sediments. Science 159, 297300.Google Scholar
Cherdintsev, V. V., Kazachevskiy, L. V., and Kuzmina, E. A. (1965). Dating Pleistocene carbonate formations by the thorium and uranium isotopes. Geochem. Intern. 2, 794.Google Scholar
Clarck, S. P. (1966). Handbook of physical constants. Geological Society of America Bulletin Memoir 97.Google Scholar
Craig, H. (1961). Isotopic variations in meteoritic waters. Science 133, 1702.CrossRefGoogle Scholar
Dansgaard, W. (1954). The 18O abundance in fresh water. Geochimica et Cosmochemica Acta 6, 241260.Google Scholar
Dansgaard, W. (1960). 18O in natural waters. Summer course on nuclear geology Varenna.Google Scholar
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus 16, 436.CrossRefGoogle Scholar
Dansgaard, W., and Johnsen, S. J. (1969). A flow model and a time scale for the ice core from Camp Century, Greenland. Journal of Glaciology 8, 215223.Google Scholar
Duplessy, J. C. (1967). Étude isotopique du concrétionnement de l'Aven d'Orgnac. Application à la paléoclimatologie de la région sud ardéchoise Thèse, Université de Paris.Google Scholar
Duplessy, J. C., Lalou, C., and De Azevedo, A. E. G. (1969). Étude des conditions de concrétionnement dans les grottes au moyen des isotopes stables de l'oxygène et du carbone. Comptes Rendus Académic des Sciences Paris 268, 23272330.Google Scholar
Duplessy, J. C., Lalou, C., and Vinot, A. C. (1970). Differential isotopic fractionation in benthonic foraminifera and paleotemperatures reasessed. Science 168, 250251.CrossRefGoogle Scholar
Emiliani, C. (1966). Paleotemperature analysis of Caribbean core P. 6304-8 and 6304-9 and a generalized temperature curve for the past 425,000 years. Journal of Geology 74, 109126.CrossRefGoogle Scholar
Ericson, D. B., Ewing, M., and Wollin, G. (1964). The Pleistocene epoch in deep sea sediments. Science 146, 723732.Google Scholar
Fornaca-Rinaldi, G. (1968). 230Th/234Th dating of cave concretions. Earth and Planetary Science Letters 5, 120122.CrossRefGoogle Scholar
Hendy, C. H., and Wilson, A. T. (1968). Paleoclimatic data from speleothems. Nature 219, 4851.CrossRefGoogle Scholar
Kaufman, A., and Broecker, W. S. (1965). Comparison of 230Th and 14C ages for carbonates materials from Lake Lahontan and Bonneville. Journal of Geophysical Research 70, 4039.Google Scholar
Labeyrie, J., Duplessy, J. C., Delibrias, G., and Letolle, R. (1967). Étude des températures des climats anciens par la mesure de l'oxygène 18, du carbone 13 et du carbone 14 dans les concrétions des cavernes. A.I.E.A Vienne.Google Scholar
Lalou, C., Labeyrie, J., and Delibrias, G. (1966). Datation des calcaires coralliens de l'atoll de Mururoa (Archipel des Tuamotu) de l'époque actuelle jusqua'à-500.000 ans. Comptes Rendus Académie des Sciences Paris 263, 19461949.Google Scholar
Lalou, C., Lambert, G., Le Roulley, J. C., Ngyuen, H. V., and Sanak, J. (1970). Utilisation de la spectrométrie α à bas niveau pour la détermination de quelques éléments présents à l'état de trace dans les substances naturelles. Colloque sur la détermination des éléments à l‘état de traces dans les substances minérales naturelles. C.N.R.S Nancy, 1968. Colloques Nationaux du Centre National de la Recherche Scientifique no. 923.Google Scholar
McCrea, J. M. (1950). On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18, 852.CrossRefGoogle Scholar
Osmond, J. K., Carpenter, J. R., and Windom, H. L. (1965). 230Th/234U age of the Pleistocene corals and oolithes of Florida. Journal of Geophysical Research 70, 1843.CrossRefGoogle Scholar
Sakanoue, M., Konishi, K., and Komura, K. (1967). Stepwise determination of thorium, protactinium and uranium isotopes and their application for geochronological studies. Radioactive dating and methods of low-level counting. A.I.E.A Vienne.Google Scholar
Shackleton, N. (1967). Oxygen isotope analyses and Pleistocene temperatures reassessed. Nature 215, 1517.Google Scholar
Stearns, C. E., and Thurber, D. L. (1965). 230Th/234U dates of late Pleistocene marine fossils from the Mediterranean and Moroccan littorals. Quaternaria 7, 29.Google Scholar
Stuiver, M. (1968). 18O content of atmospheric precipitation during last 11,000 years in the Great Lakes region. Science 162, 994997.CrossRefGoogle Scholar
Thurber, D. L., Broecker, W. S., Potratz, H. A., and Blanchard, R. L. (1965). Uranium series ages of Pacific corals. Science 149, 1955.CrossRefGoogle Scholar
Veeh, H. H. (1966). The 230Th/234U and 234U/238U age of Pleistocene high sea level stand. Journal of Geophysical Research 71, 3379.Google Scholar