Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T19:46:52.794Z Has data issue: false hasContentIssue false

A key site for inferring the timing of dispersal of giant deer in Sardinia, the Su Fossu de Cannas cave, Sadali, Italy

Published online by Cambridge University Press:  20 January 2017

Rita Teresa Melis*
Affiliation:
Department of Chemical and Geological Science, University of Cagliari, Via Trentino 51, 09127 Cagliari, Italy
Maria Rita Palombo
Affiliation:
Department of Earth Sciences, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
Bassam Ghaleb
Affiliation:
Montreal University— UQAM, GEOTOP-McGill Laboratory, H3C 3P8, Canada
Serafino Meloni
Affiliation:
Via Tanit, 18, San Sperate, Cagliari, Italy
*
*Corresponding author. E-mail address:[email protected](R.T. Melis)

Abstract

Su Fossu de Cannas (SFC) cave is one of several known cavities in the Sadali plateau in Sardinia, Italy. The evolution of the cave is the result of complex erosional and deposital processes that occurred during the Neogene and Quaternary. A fossiliferous cemented conglomerate, containing various deer remains, now forms the ceiling of a cavity (tunnel). The faunal remains belong to a large cervid, which show some morphological affinity with large deer that have an endemic Sardinian lineage (Praemegaceros sardous — Praemegaceros cazioti). Palaeoecological data based on some peculiar features and the large size of the SFC deer suggest that it is the most primitive Megacerine found in Sardinia to date, and the first representative of the endemic lineage. The 450 ka U—Th age for the flowstone capping the fossiliferous layer defines: the end of sedimentation in which Sadali deer remains are preserved; and the dispersal from the mainland of the ancestor of the endemic Sardinian Megacerini. Stratigraphic and micromorphological analyses of the cave deposits allow the reconstruction of the timing of the cave’s development throughout the Pliocene to the Holocene.

Type
Research Article
Copyright
Copyright © University of Washington 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbazzi, L., 2004. Remarks on the validity of the generic name Praemegaceros Portis 1920, and an overview on Praemegaceros species in Italy. Rendiconti Lincei 15, 115132.CrossRefGoogle Scholar
Abbazzi, L., Masini, F., 1997. Megaceroides solilhacus and other deer from the middle Pleistocene site of Isernia La Pineta (Molise, Italy). Bollettino-Societa Paleontologica Italiana 35, 213226.Google Scholar
Abbazzi, L., Angelone, C., Arca, M., Barione, G., Bedetti, C., Delfino, M., Kotsakis, T., Marcolini, F., Palombo, M.R., Pavia, M., Piras, P., Rook, L., Torre, D., Tuveri, C., Valli, A.M.F., Wilkens, B., 2004. Plio-Pleistocene fossil vertebrates of Monte Tuttavista (Orosei, E. Sardinia, Italy), an overview. Rivista Italiana di Paleontologia e Stratigrafia 110, 603628.Google Scholar
Altay, I., 1997. Red Mediterranean soils in some karstic regions of Taurus mountains, Turkey. Catena 247260.Google Scholar
Antonioli, F., Girotti, O., Orru, P., Voltaggio, M., 1998. Il deposito fossile a cervi nani nella Grotta Sommersa di Punta Giglio (Alghero): considerazioni paleoambientali dallo stadio 5 al presente. In: Congresso Nazionale della Societa Geologica Italiana, 79, 7881.Google Scholar
Ardau, F., de Waele, J., 1999. Geosites of the Tacchi area (central-east Sardinia, Italy). In: Barettino, D., Vallejo, M., Gallego, E. (Eds.), Towards the Balanced Management and Conservation of the Geological Heritage in the New Millenium, Madrid, pp. 8793.Google Scholar
Auler, A.S., Wang, X., Edwards, R.L., Cheng, H., Cristalli, P.S., Smart, P.L., Richards, D.A., 2004. Quaternary ecological and geomorphic changes associated with rainfall events in presently semi-arid northeastern Brazil. Journal of Quaternary Science 19, 693701.Google Scholar
Auler, A.S., Plo, L.B., Smart, P.L., Wang, X., Hoffman, D., Richards, D.A., Edwards, R.L., Neves, W.A., Cheng, H., 2006. U-seriea dating and taphonomy of Quaternary vertebrates from Brazilian Caves. Palaeo 240, 508522.Google Scholar
Azzaroli, A., 1952. La sistematica dei Cervi Giganti e i Cervi Nani delle isole. Atti della Società Toscana di Scienze Naturali di Pisa Memorie (A) 59, 119127 Google Scholar
Azzaroli, A., 1961. Il nanismo nei cervi insulari. Paleontographia Italica LVI (XXVI), 131.Google Scholar
Azzaroli, A., 1979. On a late Pleistocene ass from Tuscany; with notes on the history of asses. Palaeontogrphia Italica 71, 2747.Google Scholar
Barca, S., Costamagna, L.G., 2000. Facies analysis of the “Dorgali Dolostone” formation (middle Jurassic, Central Sardinia, Italy): preliminary data. In: Convegno “Evoluzione geologica e geodinamica dell’Appennino” in memoria del Prof. Giampaolo Pialli; Perugia, Febbraio 2000, pp. 1920.Google Scholar
Bartolo, G., Concu, P., Deidda, D., de Waele, J., Grafitti, G., Salis, T., 1999. Taccu D’ogliastra Ulàssai-Osini-Gairo-Ussassài. S’alvure Editrice, Oristano, p. 269.Google Scholar
Benzi, V., Abbazzi, L., Bartolomei, P., 2007. Radiocarbon and U-series dating of the endemic deer Praemegaceros cazioti (Depéret) from “Grotta Juntu”, Sardinia. Journal of Archaeological Science 34, 790794.Google Scholar
Bianco, L., de Waele, J., 1992. Il Monte Tisiddu e il Tacco di Ulassai. Monografia di Antheo. Bollettino del Gruppo Speleo-Archeologico Giovanni Spano Cagliari 1, 122.Google Scholar
Boero, V., Franchini, A.M., 1992. Crystallization of hematite and goethite in the presence of soil minerals. European Journal of Mineralogy 4, 539546.Google Scholar
Bosch, R.F., White, W.B., 2004. Lithofacies and transport of clastic sediments in karstic aquifers. In: Sasowsky, I.D., Mylroie, J. (Eds.), Studies of Cave Sediments: Physical and Chemical Records of Paleoclimate. Kluwer/Plenum, New York, NY, pp. 122.Google Scholar
Brain, C.K., 1995. The Influence of climatic changes on the completeness of the early hominin record in Southern African Caves, with particular reference to Swartkrans. In: Vrba, E.S. (Ed.), Palaeoclimate and Evolution, with Emphasis on Human Origins. Yale, New Haven, pp. 385424.Google Scholar
Bronger, A., Bruhn-Lobin, N., 1997. Paleopedology of Terrae rossae-Rhodoxeralfs from Quaternary calcarenites in NW Marocco. Catena 28, 279295.CrossRefGoogle Scholar
Brook, G.A., Keferl, E.P., Nickmann, R.J., 1987. Paleoenvironmental data for N.W Georgia, U.S.A., from fossils in cave speleothems. International Journal of Speleology 16, 6978.Google Scholar
Bullock, P., Fedoroff, N., Jongerius, A., Stoops, G., Tursina, T., 1985. Handbook for Soil Thin Section Description. Waine Research Publications, Wolverhampton, UK.Google Scholar
Burney, D.A., James, H.F., Burney, L.P., Olson, S.L., Kikuchi, W., Wagner, W.L., Burney, M., McCloskey, D., Kikuchi, D., Grady, F.V., Gage, R., Nishek, R., 2001. Fossil evidence for a diverse biota from Kaua’i and its transformation since human arrival. Ecological Monographs 71, 615641.Google Scholar
Caloi, L., Malatesta, A., 1974. Il cervo pleistocenico di Sardegna. Memorio dell’Istituto Italiano di Paleontologia Umana 2, 163240.Google Scholar
Caloi, L., Kotsakis, T., Palombo, M.R., Petronio, C., 1981. Il giacimento a vertebrati del Pleistocene superiore di San Giovanni in Sinis (Sardegna occidentale). Rendiconti dell’Accademia Nazionale dei Lincei s. 8, 69 (1980), 185197.Google Scholar
Carrión, J.S., Yll, E.I., Walker, M.J., Legaz, A.J., Chaín, C., Lopez, A., 2003. African flora in south-eastern Spain: new evidence from cave pollen at two Neanderthal man sites. Global Ecology & Biogeography 12, 119129 CrossRefGoogle Scholar
Casula, G., Cherchi, A., Montadert, L., Murru, M., Sarria, E., 2001. The Cenozoic graben system of Sardinia (Italy): geodynamic evolution from new seismic and field data. Marine and Petroleum Geology 18, 863888.CrossRefGoogle Scholar
Cocco, F., 2013. Plio-Pleistocene Tectonic Evolution of Southern Sardinia. PhD thesis. Universita degli Studi di Cagliari.Google Scholar
Comaschi Caria, I., 1955. Resti di Cervidi nel Quaternario di Porto Vesme (Sardegna sud-occidentale). Rivista Italiana di Paleontologia e Stratigrafia 55, 1722.Google Scholar
Comaschi Caria, I., 1956. Specie nuova di Cervo nel Quaternario di Alghero (Sardegna). Rendiconti Seminario Facolta di Scienze, Universita di Cagliari 25, 16.Google Scholar
Cordy, J.M., Ozer, A., 1973. D.couverte d’un crane de cervid. megacerin (Nesoleipoceros cazioti) dans le Quaternaire de la Sardaigne septentrionale. Annales de Société géologique de Belgique 95, 425449.Google Scholar
Costamagna, L., 2015. Middle Jurassic continental to marine transition in an extensional tectonics context: the Genna Selole Fm depositional system in the Tacchi area (central Sardinia, Italy). Geological Journal 115.Google Scholar
Croitor, R., 2006. Taxonomy and systematics of large-sized deer of the genus Praemegaceros Portis, 1920 (Cervidae, Mammalia). Courier-Forschungsinstitut Senckenberg 256, 91.Google Scholar
Croitor, R., Bonifay, M.F., Bonifay, E., 2006. Origin and evolution of the late Pleistocene island deer Praemegaceros (Nesoleipoceros) cazioti (Déperet) from Corsica and Sardinia. Bulletin du Musée d’Anthropologie préhistorique de Monaco 46, 3568.Google Scholar
Cuenca-Bescós, G., Stráus, L.G., González Morales, M.R., García Pimienta, J.C., 2009. The reconstruction of past environments through small mammals: from the Mousterian to the Bronze Age in El Mirón Cave (Cantabria, Spain). Journal of Archaeological Science 36, 947955.CrossRefGoogle Scholar
De Vos, J., 2000. Pleistocene deer fauna in Crete: its adaptive radiation and extinction. Tropics 10, 125134.Google Scholar
De Waele, J., 2009. Evaluating disturbance on Mediterranean karst areas: the example of Sardinia (Italy). Environmental Geology 58, 239255.CrossRefGoogle Scholar
De Waele, J., Di Gregorio, F., Follesa, R., Piras, G., 2005. Geosites and landscape evolution of the Tacchi: an example from Central-East Sardinia. Il Quaternario 18, 213222.Google Scholar
De Waele, J., Ferrarese, F., Granger, D., Sauro, F., 2012. Landscape Evolution in the Tacchi area (Central-East Sardinia, Italy) based on karst and fluvial morphology and age of cave sediments. Geografia Fisica e Dinamica Quaternaria 35, 119127 Google Scholar
Dehaut, E.G., 1911. Animaux fossiles du Cap Figari. Materiaux pour servir. l’histoire zoologique et paleontologique des les de Corse et de Sardaigne Steinheil, Paris 3, 5359.Google Scholar
Deperet, C., 1897. Etude de quelques gisements nouveaux de Vertébrés pléistocènes de l’île de Corse. Annales de la Société Linnéenne de Lyon 44, 111128 Google Scholar
Dieni, I., Massari, F., 1985. Site E.1: continental deposits of Bajocian-Bathonian of Genna Selole (Baunei). In: 19th European Micropaleontological Colloquium, Sardinia, October 1-10, AGIP, Cagliari, pp. 192194.Google Scholar
Eisenmann, V., van der Geer, B., 1999. The Cynotherium from Corbeddu (Sardinia): comparative biometry with extant and fossil canids. In: Reumer, J.W.F., De Vos, J. (Eds.), Elephans have Snorkel! Papers in Honour of Paul. Sondar — Deinsea, vol. 7, pp. 147168.Google Scholar
Fanelli, F., Palombo, M.R., Pillola, G., Ibba, A., 2007. Tracks and trackways of Praemegaceros cazioti (Deperet 1897) (Artiodactyla, Cervidae) in Pleistocene aeolianites from Sardinia (western Mediterranean, Italy). Bollettino della Societa Paleontologica Italiana 46, 4754.Google Scholar
Foos, A.M., Sasowsky, I.D., LaRock, E.J., Kambesis, P.N., 2000. Detrital origin of a sedimentary fill, Lechuguilla cave, Guadalupe Mountains, New Mexico. Clays and Clay Minerals 48, 693698.Google Scholar
Frisia, S., Borsato, A., Fairchild, I.J., McDermott, F., 2002. Aragonite-calcite relationships in speleothems (Grotte de Clamouse, France): environment, fabrics and carbonate geochemistry. Journal of Sedimentary Research 72, 687699.CrossRefGoogle Scholar
Ginesu, S., Sias, S., Cordy, J.-M., Trenini, L., Mele, A., Serra, A., Virgilio, P., Zara, A., 1998. Grotta di Nurighe (Sassari), esplorando il passato. Speleologia 38, 5260.Google Scholar
Ginesu, S., Sias, S., Cordy, J.M., 2003. Morphological evolution of the Nurighe cave (Logudoro, Northern Sardinia Italy) and the presence of man first results. Geografia Fisica e Dinamica Quaternaria 26, 4148.Google Scholar
Gliozzi, E., Malatesta, A., Palombo, M.R., 1984. Upper Pleistocene small mammal association in the Is Oreris area (Iglesiente, SW Sardegna). Geologica Romana 23, 121129 Google Scholar
Goldberg, P., Bar-Yosef, O., 1998. Site formation processes in Kebara and Hayonim Caves and their significance in Levantine prehistoric caves. In: Akazawa, T., Aoki, K., Bar-Yosef, O. (Eds.), Neanderhals and Modern Humans in Western Asia. Plenum Press, New York, pp. 107126.Google Scholar
Goldberg, P., Laville, H., Meignen, L., Bar-Yosef, O., 2007. Stratigraphy and geoarchaeological history of Kebara Cave, Mount Carmel. In: Bar-Yosef, O., Meignen, L. (Eds.), Kebara Cave, Mt. Carmel, Israel: the Middle and Upper Paleolithic Archaeology, Part I, American School of Prehistoric Research Bulletin 49 Harvard University, Peabody Museum of Archaeology and Ethnology, Cambridge, M.A., pp. 4990.Google Scholar
Karkanas, P., Goldberg, P., 2013. Micromorphology of cave sediments. In: Shroder, John F., Frumkin, A. (Eds.), Treatise on Geomorphology, Karst Geomorphology, vol. 6. Academic Press, San Diego, pp. 286297.Google Scholar
Klein Hofmeijer, G., 1996. Late Pleistocene Deer Fossils from Corbeddu Cave. PhD thesis. Utrecht University, The Netherlands.Google Scholar
Klein Hofmeijer, G., 1997. Late Pleistocene deer fossils from Corbeddu Cave. In: Implications for Human Colonization of the Island of Sardinia. British Archaeological Reports, International Series, vol . 663.Google Scholar
Knapp, E.P., Terry, D.O., Harbor, D.J., Thren, R.C., 2004. Reading Virginia’s Paleoclimate from the geochemistry and sedimentology of Clastic Cave sediments. In: Sasowsky, I.D., Mylroie, J. (Eds.), Studies of Cave Sediments Physical and Chemical Records of Paleoclimate. Springer.Google Scholar
Kotsakis, T., 1980. Osservazioni sui vertebrati Quaternari della Sardegna. Bolletino della Societa Geologica Italiana 99, 151165.Google Scholar
Madurell-Malapeira, J., Palombo, M.R., Sotnikova, M., 2015. Cynotherium malatestai sp. nov. (Carnivora, Canidae) from the early middle Pleistocene deposits of Grotta dei Fiori (Sardinia, Western Mediterranean). Journal of Vertebrate Paleontology 35, 943400.Google Scholar
Marini, A., Ulzega, A., 1973. Osservazioni geomorfologiche sul tacco di Ulassai. Rendiconti Seminario Facolta Scienze Universita di Cagliari 47, 192208.Google Scholar
Maslin, M.A., Ridgwell, A.J., 2005. Mid-Pleistocene revolution and the ‘eccentricity myth’. Geological Society, London, Special Publications 247, 1934.Google Scholar
Melis, R., Palombo, M.R., Mussi, M., 2002. The stratigraphic sequence of Gonnesa (SW Sardinia): palaeoenvironmental, palaeontological and archaeological evidence. British Archaeological Reports, International Series 1095, 445453.Google Scholar
Melis, R.T., Ghaleb, B., Boldrini, R., Palombo, M.R., 2013. The Grotta dei Fiori (Sardinia, Italy) stratigraphical successions: a key for inferring palaeoenvironment evolution and updating the biochronology of the Pleistocene mammalian fauna from Sardinia. Quaternary International 288, 8196.CrossRefGoogle Scholar
Menéndez, E., 1987. Cérvidos del yacimiento del Pleistoceno inferior de Venta Micena-2, Orce (Granada, Espana). Paleontologia i Evolucio, Memoria Especial 1, 129181.Google Scholar
Munsell, Colour, 1998. Munsell Soil Colour Charts. Koll Morgen Instruments, MD.Google Scholar
Nielsen-Marsh, C.M., 2000. Patterns of diagenesis in bone I: the effects of site environments. Journal of Archaeological Science 27, 11391150.Google Scholar
Palombo, M.R., 1985. I grandi mammiferi pleistocenici delle isole del Mediterraneo: tempi e vie di migrazione. Bollettino della Societa Paleontologica Italiana 24, 201204.Google Scholar
Palombo, M.R., 2006. Biochronology of the Plio-Pleistocene terrestrial mammals of Sardinia: the state of the art. Hellenic Journal of Geosciences 41, 4766.Google Scholar
Palombo, M.R., 2009. Biochronology, paleobiogeography and faunal turnover in western Mediterranean Cenozoic mammals. Integrative Zoology 4, 367386.Google Scholar
Palombo, M.R., Melis, R.T., 2005. Su Fossu de Cannas Cave (Sadali, central-eastern Sardinia, Italy): the oldest deposit holding Pleistocene megalocerine remains in Sardinia. Monografies de la Societat d’Historia Natural de les Balears 12, 265276.Google Scholar
Palombo, M.R., Rozzi, R., 2014. How correct is any chronological ordering of the Quaternary Sardinian mammalian assemblages? Quaternary International 328, 136155.Google Scholar
Palombo, M.R., Melis, R.T., Meloni, S., Tuveri, C., 2003. New cervid in the Pleistocene of Sardinia (Italy). Bollettino della Societa Paleontologica Italiana 42, 157162.Google Scholar
Palombo, M.R., Antonioli, F., Lo Presti, V., Mannino, M.A., Melis, R.T., Orru, P., Stocchi, P., Talamo, S., Quarta, G., Calcagnile, L., Deiana, G., Altamura, S., 2016. The Late Pleistocene to Holocene palaeogeographic evolution of the Porto Conte area: clues for a better understanding of human colonization of Sardinia and faunal dynamics during the last 30 ka. Quaternary International (in press).Google Scholar
Pickering, R., Hancox, P.J., Lee-Thorp, J.A., Grün, R., Mortimer, G.E., McCulloch, M., Berger, L.R., 2007. Stratigraphy, UeTh chronology, and paleoenvironments at Gladysvale Cave: insights into the climatic control of South African hominin bearing cave deposits. Journal of Human Evolution 35, 602619.Google Scholar
Radulesco, C., Samson, P., 1967. Sur un nouveau cerf megacerin du Pleistocene moyen de la depression de Brasov (Roumanie). Geologica Romana 6, 317344.Google Scholar
Railsback, L.B., Brook, G.A., Chen, J., Kalin, R., Fleisher, C.J., 1994. Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite. Journal of Sedimentary Research 64 (1a), 147155.Google Scholar
Richards, D.A., Dorale, J.A., 2003. Uranium-series chronology and environmental applications of speleothems. Reviews in Mineralogy and Geochemistry 52 (1), 407460.Google Scholar
Sala, B., Masini, F., 2007. Late Pliocene and Pleistocene small mammal chronology in the Italian peninsula. Quaternary International 160, 416.Google Scholar
Sasowsky, I.D., 2007. Clastic sediments in caves — imperfect recorders of processes in karst. Acta Carsologica 36, 143149.Google Scholar
Shunk, A.J., Driese, S.G., Michael Clark, G., 2006. Latest Miocene to earliest Pliocene sedimentation and climate record derived from paleosinkhole fill deposits, Gray Fossil Site, northeastern Tennessee, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology 231, 265278.Google Scholar
Springer, G.S., 2005. Clastic sediments in caves. In: Culver, D., White, W. (Eds.), Encyclopedia of Caves. Elsevier, pp. 102108.Google Scholar
Stoops, G., 2003. Guidelines for the Analysis and Description of Soil and Regolith Thin Sections. SSSA, Madison, WI.Google Scholar
van der Made, J., 1999. Biogeography and stratigraphy of the Mio-Pleistocene mammals of Sardinia and the description of some fossils. Deinsea 7, 377360.Google Scholar
van der Made, J., Palombo, M.R., 2006. Large deer from the Pleistocene of Sardinia. Hellenic Journal of Geosciences 41, 163176.Google Scholar
Violante, P., 2000. Metodi di analisi chimica del suolo. Franco Angeli, Roma, Italy, 536 pp.Google Scholar
Vislobokova, I.A., 2012. Giant deer: origin, evolution, role in the biosphere. Paleontological Journal 46, 643775.Google Scholar
Vislobokova, I.A., 2013. Morphology, taxonomy, and phylogeny of megacerines (Megacerini, Cervidae, Artiodactyla). Paleontological Journal 47, 833950.Google Scholar
White, W.B., 2007. Cave sediments and paleoclimate. Journal of Cave and Karst Studies 69, 7693.Google Scholar