Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T18:25:00.116Z Has data issue: false hasContentIssue false

ITCZ rather than ENSO signature for abrupt climate changes across the tropical Pacific?

Published online by Cambridge University Press:  20 January 2017

Guillaume Leduc*
Affiliation:
CEREGE, Aix-Marseille Université, CNRS, Collège de France, IRD, Europôle Méditerranéen de L'Arbois, BP 80, 13545 Aix en Provence, France
Laurence Vidal
Affiliation:
CEREGE, Aix-Marseille Université, CNRS, Collège de France, IRD, Europôle Méditerranéen de L'Arbois, BP 80, 13545 Aix en Provence, France
Kazuyo Tachikawa
Affiliation:
CEREGE, Aix-Marseille Université, CNRS, Collège de France, IRD, Europôle Méditerranéen de L'Arbois, BP 80, 13545 Aix en Provence, France
Edouard Bard
Affiliation:
CEREGE, Aix-Marseille Université, CNRS, Collège de France, IRD, Europôle Méditerranéen de L'Arbois, BP 80, 13545 Aix en Provence, France
*
Corresponding author. Institute of Earth Sciences, Geology Department, Kiel University, Ludewig-Meyn-Str. 10, D-24118 Kiel, Germany.

E-mail address:[email protected] (G. Leduc).

Abstract

Latitudinal movements of the Intertropical Convergence Zone (ITCZ), analogous to its present-day seasonal shifts, and El Niño Southern Oscillation (ENSO)-type variability both potentially impacted rainfall changes at the millennial timescale during the last glacial period. In this study we compare tropical Pacific sedimentary records of paleoprecipitation to decipher which climate mechanism was responsible for the past rainfall changes. We find that latitudinal movements of the ITCZ are consistent with the observed rainfall patterns, challenging the ENSO hypothesis for explaining the rapid rainfall changes at low latitudes. The ITCZ-related mechanism appears to reflect large-scale atmospheric rearrangements over the tropical belt, with a pronounced Heinrich–Dansgaard/Oeschger signature. This observation is coherent with the simulated tropical rainfall anomalies induced by a weakening of the Atlantic thermohaline circulation in modeling experiments.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, E. Paleoceanographic implications on the differences in deep-sea sediment mixing between large and fine particles. Paleoceanography 16, (2001). 235239.CrossRefGoogle Scholar
Benway, H.M., and Mix, A.C. Oxygen isotopes, upper-ocean salinity, and precipitation sources in the eastern tropical Pacific. Earth and Planetary Science Express 224, (2004). 493507.CrossRefGoogle Scholar
Benway, H.M., Mix, A.C., Haley, B.A., and Klinkhammer, G.P. Eastern Pacific warm pool paleosalinity and climate variability: 0–30 kyr. Paleoceanography 21, (2006). PA3008 http://dx.doi.org/10.1029/2005PA001208CrossRefGoogle Scholar
Bretherton, S.C.L., Gagan, M.K., Ayliffe, L.K., Zhao, J.X., Griffiths, M.L., Drysdale, R.N., and Hantoro, W.S. Speleothem reconstructions of paleomonsoon dynamics from Flores, Indonesia over the last 24 kyr. Goldschmidt Conference abstracts, Geochimica Et Cosmochimica Acta 72, 12S (2008). A114 Google Scholar
Conkright, M.E., and Boyer, T.P., (2002). World Ocean Atlas 2001: objective analyses, data statistics, and figures, CD-ROM documentation. http://ingrid.ldeo.columbia.edu, Natl. Ocean. Data Cent., Silver Spring.Google Scholar
Curry, W.B., Thunell, R.C., and Honjo, S. Seasonal changes in the isotopic composition of planktonic foraminifera collected in Panama Basin sediment traps. Earth and Planetary Science Express 64, 1 (1983). 3343.CrossRefGoogle Scholar
Dahl, K.A., Broccoli, A.J., and Stouffer, R.J. Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective. Climate Dynamics 24, (2005). 325346.CrossRefGoogle Scholar
Dai, A., and Wigley, T.M.L. Global patterns of ENSO-induced precipitation. Geophysical Research Letter 27, 9 (2000). 12831286. http://dx.doi.org/10.1029/1999GL011140CrossRefGoogle Scholar
Dannenmann, S., Linsley, B.K., Oppo, D.W., Rosenthal, Y., and Beaufort, L. East Asian monsoon forcing of suborbital variability in the Sulu Sea during Marine Isotope Stage 3: link to Northern Hemisphere climate. Geochem. Geophys. Geosys. 4, 1 (2003). 1001 http://dx.doi.org/10.1029/2002GC000390CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinjörnsdottir, A.E., Jouzel, J., and Bond, G. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, (1993). 218220.CrossRefGoogle Scholar
de Garidel-Thoron, T., Rosenthal, Y., Beaufort, L., Bard, E., Sonzogni, C., and Mix, A.C. A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 kyr. Paleoceanography 22, (2007). PA3204 http://dx.doi.org/10.1029/2006PA001269CrossRefGoogle Scholar
Fairbanks, R.G., Evans, N.M., Rubenstone, J.L., Broad, K., Moore, M.D., and Charles, C.D. Evaluating climate indices and their geochemical proxies measured in corals. Coral Reefs 16, (1997). 93100.CrossRefGoogle Scholar
Gagan, M.K., Ayliffe, L.K., Beck, J.W., Cole, J.E., Druffel, E.R.M., Dunbar, R.B., and Schrag, D.P. New views of tropical paleoclimates from corals. Quaternary Science Reviews 19, (2000). 4564.CrossRefGoogle Scholar
Ganopolski, A., and Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, (2001). 153158.CrossRefGoogle Scholar
Garcin, Y., Vincens, A., Williamson, D., Guiot, J., and Buchet, G. Wet phases in tropical southern Africa during the last glacial period. Geophysical Research Letters 33, (2006). L07703 http://dx.doi.org/10.1029/2005GL025531CrossRefGoogle Scholar
Griffiths, M.L., Drysdale, R., Gagan, M., Ayliffe, L., Zhao, J., St. Pierre, E., Hantoro, W., Suwargadi, B., (2007). A Holocene record of monsoon intensity from speleothems in Flores, Indonesia. American Geophysical Union, Fall Meeting 2007, (1bstract #PP14A-06).Google Scholar
Hemming, S.R. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global imprint. Reviews of Geophysics 42, (2004). RG1005 http://dx.doi.org/10.1029/2003RG000128CrossRefGoogle Scholar
Ivanochko, T.S., Ganeshram, R.S., Brummer, G.J.A., Ganssen, G., Jung, S.J.A., Moreton, S.G., and Kroon, D. Variations in tropical convection as an amplifier of global climate change at the millennial scale. Earth and Planetary Science Letters 235, (2005). 302314.CrossRefGoogle Scholar
Kienast, M., Steinke, S., Stattegger, K., and Calvert, S.E. Synchronous tropical South China Sea SST change and Greenland warming. Science 291, (2001). 21322134.CrossRefGoogle ScholarPubMed
Knutti, R., Flückiger, J., Stocker, T.F., and Timmermann, A. Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature 430, (2004). 851856.CrossRefGoogle ScholarPubMed
Koutavas, A., Lynch-Stieglitz, J., Marchitto, T., and Sachs, J. El Niño-like pattern in ice age tropical Pacific sea surface temperature. Science 297, (2002). 226230.CrossRefGoogle ScholarPubMed
Lea, D.W., Pak, D.K., and Spero, H.J. Climate impact of Late Quaternary Equatorial Pacific sea surface temperature variations. Science 289, (2000). 17191724.CrossRefGoogle ScholarPubMed
Leduc, G., Vidal, L., Tachikawa, K., Rostek, F., Sonzogni, C., Beaufort, L., and Bard, E. Moisture transport across Central America as a positive feedback on abrupt climatic changes. Nature 445, (2007). 908911.CrossRefGoogle ScholarPubMed
Legrande, A.N., and Schmidt, G.A. Global gridded dataset of the oxygen isotopic composition in seawater. Geophysical Research Letters 33, (2006). L12604 http://dx.doi.org/10.1029/2006GL02011CrossRefGoogle Scholar
LeGrande, A.L., Schmidt, G.A., Shindell, D.T., Field, C.V., Miller, R.L., Koch, D.M., Faluvegi, F., and Hoffman, G. Consistent simulations of multiple proxy responses to an abrupt climate event. Proceedings of the National Academy of Sciences 103, 4 (2006). http://dx.doi.org/10.1073/pnas.0510095103CrossRefGoogle Scholar
Linsley, B.K., Dunbar, R.B., Wellington, G.M., and Mucciarone, D.A. A coral-based reconstruction of the Intertropical Convergence Zone variability over Central America since 1707. Journal of Geophysical Research 99, C5 (1994). 99779994. http://dx.doi.org/10.1029/94JC00360CrossRefGoogle Scholar
Masson-Delmotte, V., Jouzel, J., Landais, A., Stievenard, M., Johnsen, S.J., White, J.W.C., Werner, M., Sveinbjornsdottir, A., and Fuhrer, K. GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science 309, (2005). 118121.CrossRefGoogle ScholarPubMed
Menviel, L., Timmermann, A., Mouchet, A., and Timm, O. Meridional reorganizations of marine and terrestrial productivity during Heinrich events. Paleoceanography 23, (2008). PA1203 http://dx.doi.org/10.1029/2007PA001445CrossRefGoogle Scholar
Mix, A.C. Running hot and cold in the eastern equatorial Pacific. Quaternary Science Reviews 25, (2006). 11471149.CrossRefGoogle Scholar
Muller, J., Kylander, M., Wüst, R.A.J., Weiss, D., Martinez-Cortizas, A., LeGrande, A.N., Jennerjahn, T., Behling, H., Anderson, W.T., and Jacobson, G. Possible evidence for wet Heinrich events in tropical NE Australia: the Lynch's crater deposit. Quaternary Science Reviews 27, (2008). 468475.CrossRefGoogle Scholar
Oppo, D.W., Schmidt, G.A., and Legrande, A.N. Seawater constraints on tropical hydrology during the Holocene. Geophysical Research Letters 34, (2007). 13701 http://dx.doi.org/10.1029/2007GL030017CrossRefGoogle Scholar
Pahnke, K., Sachs, J., Keigwin, L., Timmermann, A., and Xie, S.P. Eastern tropical Pacific hydrologic changes during the past 27,000 years from D/H ratios in alkenones. Paleoceanography 22, (2007). PA4214 http://dx.doi.org/10.1029/PA001468CrossRefGoogle Scholar
Partin, J.W., Cobb, K.M., Adkins, J.F., Clark, B., and Fernandez, D.P. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum. Nature 449, (2007). 452455.CrossRefGoogle ScholarPubMed
Peterson, L.C., Haug, G.H., Hughen, K.A., and Röhl, U. Rapid changes in the hydrologic cycle of the Tropical Atlantic during the last glacial. Science 290, (2000). 19471951.CrossRefGoogle ScholarPubMed
Rohling, E.J. Progress in paleosalinity: overview and presentation of a new approach. Paleoceanography 22, (2007). PA3215 http://dx.doi.org/10.1029/2007PA001437CrossRefGoogle Scholar
Rosenthal, Y., Oppo, D.W., and Linsley, B.K. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific. Geophysical Research Letters 30, 8 (2003). 1428 http://dx.doi.org/10.1029/2002GL016612CrossRefGoogle Scholar
Rosenthal, Y., and Broccoli, A.J. In search of paleo-ENSO. Science 304, (2004). 219221.CrossRefGoogle ScholarPubMed
Steffensen, J.P., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Fischer, H., Goto-Azuma, K., Hansson, M., Johnsen, S.J., Jouzel, J., Masson-Delmotte, V., Popp, T., Rasmussen, S.O., Rothlisberger, R., Ruth, U., Stauffer, B., Siggaard-Andersen, M.L., Sveinbjörnsdóttir, A.E., Svensson, A., and White, J.W.C. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321, (2008). 680684.CrossRefGoogle ScholarPubMed
Steinke, S., Kienast, M., Groeneveld, J., Lin, L.C., Chen, M.T., and Rendle-Bühring, R. Proxy dependence on the temporal pattern of deglacial warming in the tropical South China Sea: toward resolving seasonality. Quaternary Science Reviews 27, (2008). 688700.CrossRefGoogle Scholar
Stott, L., Poulsen, C., Lund, S., and Thunell, R. Super ENSO and global climate oscillations at millennial time scales. Science 297, (2002). 222226.CrossRefGoogle ScholarPubMed
Stouffer, R.J., Dixon, K.W., Spelman, M.J., Hurlin, W., Yin, J., Gregory, J.M., Weaver, A.J., Eby, M., Flato, G.M., Robitaille, D.Y., Hasumi, H., Oka, A., Hu, A., Jungclaus, J.H., Kamenkovich, I.V., Levermann, A., Montoya, M., Murakami, S., Nawrath, S., Peltier, W.R., Vettoretti, G., Sokolov, A., and Weber, S.L. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. Journal of Climate 19, 8 (2006). 13651387.CrossRefGoogle Scholar
Stuiver, M., and Grootes, P.M. GISP2 oxygen isotope ratios. Quaternary Research 53, (2000). 277284.CrossRefGoogle Scholar
Thunell, R.C., Curry, W.B., and Honjo, S. Seasonal variation in the flux of planktonic foraminifera: time series sediment trap results from the Panama Basin. Earth and Planetary Science Letters 64, 1 (1983). 4455.CrossRefGoogle Scholar
Timmermann, A., Krebs, U., Justino, F., Goosse, H., and Ivanochko, T. Mechanisms for millennial-scale global synchronization during the last glacial period. Paleoceanography 20, (2005). PA4008 http://dx.doi.org/10.1029/2004PA001090CrossRefGoogle Scholar
Turney, C.S.M., Kershaw, A.P., Clemens, S.C., Branch, N., Moss, P.T., and Fifield, L.K. Millennial and orbital variations of El Niño/Southern Oscillation and high-latitude climate in the last glacial period. Nature 428, (2004). 306310.CrossRefGoogle ScholarPubMed
Voelker, A.H.L. workshop participants Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quaternary Science Reviews 21, (2002). 11851212.CrossRefGoogle Scholar
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E., and Labracherie, M. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews 21, (2002). 295305.CrossRefGoogle Scholar
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Cristali, P., Smart, P.L., Richards, D.A., and Shen, C.C. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432, (2004). 740743.CrossRefGoogle ScholarPubMed
Wang, X., Edwards, R.L., Auler, A.S., Cheng, H., and Ito, E. Millennial-scale interhemispheric asymmetry of low-latitude precipitation: speleothem evidence and possible high-latitude forcing, in Ocean circulation: mechanisms and impacts. Schmittner, A., Chiang, J.C.H., Hemming, S.R. Geophys. Monog. Ser. vol. 173, (2007). AGU, Washington, D. C.. 279294.Google Scholar
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Ito, E., Wang, Y., Kong, X., and Solheid, M. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophysical Research Letters 34, (2007). L23701 http://dx.doi.org/10.1029/2007GL031149CrossRefGoogle Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C., and Dorale, J.A. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, (2001). 23452348.CrossRefGoogle ScholarPubMed
Weldeab, S., Lea, D.W., Schneider, R.R., and Andersen, N. 155,000 years of West African monsoon and ocean thermal evolution. Science 316, (2007). 13031307.CrossRefGoogle Scholar
Zhang, R., and Delworth, T.L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate 18, 12 (2005). 18531860.CrossRefGoogle Scholar