Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T23:01:45.677Z Has data issue: false hasContentIssue false

Isotopic tracers of paleohydrologic change in large lakes of the Bolivian Altiplano

Published online by Cambridge University Press:  20 January 2017

Christa J. Placzek*
Affiliation:
Los Alamos National Laboratory, MS-J514, Los Alamos, NM 87545, USA
Jay Quade
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
P. Jonathan Patchett
Affiliation:
Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
*
Corresponding author. Fax: +1 505 665 4955.

Abstract

We have developed an 87Sr/86Sr, 234U/238U, and δ18O data set from carbonates associated with late Quaternary paleolake cycles on the southern Bolivian Altiplano as a tool for tracking and understanding the causes of lake-level fluctuations. Distinctive groupings of 87Sr/86Sr ratios are observed. Ratios are highest for the Ouki lake cycle (120–95 ka) at 0.70932, lowest for Coipasa lake cycle (12.8–11.4 ka) at 0.70853, and intermediate at 0.70881 to 0.70884 for the Salinas (95–80 ka), Inca Huasi (~ 45 ka), Sajsi (24–20.5 ka), and Tauca (18.1–14.1 ka) lake cycles. These Sr ratios reflect variable contributions from the eastern and western Cordilleras. The Laca hydrologic divide exerts a primary influence on modern and paleolake 87Sr/86Sr ratios; waters show higher 87Sr/86Sr ratios north of this divide. Most lake cycles were sustained by slightly more rainfall north of this divide but with minimal input from Lake Titicaca. The Coipasa lake cycle appears to have been sustained mainly by rainfall south of this divide. In contrast, the Ouki lake cycle was an expansive lake, deepest in the northern (Poópo) basin, and spilling southward. These results indicate that regional variability in central Andean wet events can be reconstructed using geochemical patterns from this lake system.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceituno, P. On the functioning of the Southern Oscillation in the South America sector. Part I: surface climate. Monthly Weather Review 116, (1988). 505524.2.0.CO;2>CrossRefGoogle Scholar
Andersen, M.B., Erel, Y., and Bourdon, B. Experimental evidence for 234U–238U fractionation during granite weathering with implications for 234U/238U in natural waters. Geochimica et Cosmochimica Acta 73, (2009). 41244141.Google Scholar
Argollo, J., and Mourguiart, P. Late Quaternary climate history of the Bolivian Altiplano. Quaternary International 72, (2000). 3651.Google Scholar
Asahara, Y., Tanaka, T., Kamioka, H., and Nishimura, A. Asian continental nature of 87Sr/86Sr ratios in north central Pacific sediments. Earth and Planetary Science Letters 133, (1995). 105116.Google Scholar
Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., and Veliz, C. Tropical climate change at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, (2001). 698701.CrossRefGoogle ScholarPubMed
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., and Broda, J.P. The history of South American tropical precipitation for the past 25,000 years. Science 291, (2001). 640643.Google Scholar
Benson, L.V., and Peterman, Z. Carbonate deposition, Pyramid Lake subbasin, Nevada. 3. The use of 87Sr ratios in carbonate deposits (tufas) to determine the hydrologic state of paleolake systems. Palaeogeography Palaeoclimatology Palaeoecololgy 119, (1995). 201213.Google Scholar
Bills, B.J., deSilva, S.L., Currey, D.R., Emenger, R.S., Lillquist, K.D., Donnellan, A., and Worden, B. Hydro-isostatic deflection and tectonic tilting in the central Andes: initial results of a GPS survey of Lake Minchin shorelines. Geophysical Research Letters 21, (1994). 293296.Google Scholar
Blard, P.-H., Lavé, J., Farley, K.A., Fornari, M., Jiménez, N., and Ramirez, V. Late local glacial maximum in the Central Altiplano triggered by cold and locally-wet conditions during the paleolake Tauca episode (17–15 ka, Heinrich 1). Quaternary Science Reviews 28, (2009). 34143427.Google Scholar
Blodgett, T.A., Lenters, J.D., and Isacks, B.L. Constraints on the Origin of Paleolake Expansions in the Central Andes: Earth Interactions 1. (1997). http://ams.allenpress.com/amsonline/?request-get-archive&issn-1087-3562 Google Scholar
Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A., Asmerom, Y., (2000). The half-lives of uranium-234 and thorium-230. Chem. Geol. 169, 1733.Google Scholar
Condom, T., Coudrain, A., Dezetter, A., Brunstein, D., Delclaux, , and Jean-Emanuel, S. Transient modeling of lacustrine regressions: two case studies from the Andean Altiplano. Hydrological Processes 18, (2004). 23952408.Google Scholar
Coudrain, A., Loubet, M., Condom, T., Talbi, A., Ribstein, P., Pouyaud, B., Quintanilla, J., Dieulin, C., and Dupre, B. Données isotopiques (87Sr/86Sr) et changements hydrologiques depuis 15000 ans sur l'Altiplano. Hydrologic Science 47, (2002). 293306.CrossRefGoogle Scholar
Craig, H., and Gordon, L.I. Deuterium and oxygen 18 variations in the ocean and marine atmosphere. Tongiogi, E., Lishi, V., and Pisa, F. Stable Isotopes in Oceanographic Studies and Paleotemperatures. (1965). Spoleto, Italy. 9130.Google Scholar
Cross, S.L., Baker, P.A., Seltzer, G.O., Fritz, S.C., and Dunbar, R.B. Late Quaternary climate and hydrology of tropical South America inferred from an isotopic and chemical model of Lake Titicaca, Bolivia and Peru. Quaternary Research 56, (2001). 19.Google Scholar
Enfield, D.B., and Mayer, D.A. Tropical Atlantic sea surface temperature variability and its relation to El Nifio-Southern Oscillation. Journal of Geophysical Research 102, (1997). 929945.Google Scholar
Fornari, M., Rischer, F., and Feruad, G. Dating paleolakes in the central Altiplano of Bolivia. Palaeogeography Palaeoclimatology Palaeoecolology 172, (2001). 269282.CrossRefGoogle Scholar
Fritz, S.C., Baker, P.A., Lowenstein, T.K., Seltzer, G.O., Rigsby, C.A., Dwyer, G.S., Tapia, P.M., Arnold, K.K., Ku, T.-L., and Luo, S. Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America. Quaternary Research 61, (2004). 95104.Google Scholar
Garreaud, R.D., and Aceituno, P. Interannual rainfall variability over the South American Altiplano. Monthly Weather Review 125, (2001). 31573171.Google Scholar
Grove, M.J., Baker, P.A., Cross, S.L., Rigsby, C.A., and Seltzer, G.O. Application of strontium isotopes to understanding the hydrology and paleohydrology of the Altiplano, Bolivia—Peru. Palaeogeography Palaeoclimatolgy Palaeoecology 194, (2003). 281297.Google Scholar
Hart, W.S., Quade, J., Madsen, D.B., Kaufman, D.S., and Oviatt, C.G. The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system. Geological Society of America Bulletin 116, (2004). 11071119.Google Scholar
Hastenrath, S., and Kutzbach, J. Late Pleistocene climate and water budget of the South American Altiplano. Quaternary Research 24, (1985). 249256.Google Scholar
Ku, T.-L., Luo, S., Lowenstein, T.K., Li, J., and Spencer, R.J. U-series chronology of lacustrine deposits in Death Valley, California. Quaternary Research 50, (1998). 261275.Google Scholar
Latorre, C., Betancourt, J.L., Rylander, K.A., and Quade, J. Vegetation invasions into absolute desert: a 45,000-yr rodent midden record from the Calama-Salar de Atacama Basins, northern Chile (22–24°S). Geological Society of America Bulletin 114, (2002). 349366.2.0.CO;2>CrossRefGoogle Scholar
Latorre, C., Betancourt, J.L., and Arroyo, M.T.K. Late Quaternary vegetation and climate history of a perennial river canyon in the Rio Salado basin (22°S) of northern Chile. Quaternary Research 65, (2006). 450466.Google Scholar
Lenters, J.D., and Cook, K.H. On the origin of the Bolivian High and related circulation features of the South American climate. Journal of Atmospheric Science 54, (1997). 656677.2.0.CO;2>CrossRefGoogle Scholar
Minchin, J. Notes of a Journey through part of the Andean Table-Land of Bolivia in 1882. Proceedings or the Royal Geographic Society 4, (1882). 671676.Google Scholar
Montes de Octa, I. Geografia y Recursos Naturales de Bolivia. (1997). Edobol, La Paz. 614 pp.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M. Climate and atmospheric history of the past 420,000 years from the Vostock ice core, Antarctica. Nature 399, (1999). 429436.Google Scholar
Placzek, C., Quade, J., and Patchett, P.J. Geochronology and stratigraphy of Late Pleistocene lake cycles on the Southern Bolivian Altiplano: implications for causes of tropical climate change. Geological Society of America Bulletin 118, (2006). 515532.Google Scholar
Placzek, C., Patchett, P.J., Quade, J., and Wagner, J.D.M. Strategies for successful U–Th dating of paleolake carbonates: an example from the Bolivian Altiplano. Geochemistry Geophysics Geosystems 7, (2006). Q05024 Google Scholar
Placzek, C., Betancourt, J.A., Quade, J., Patchett, P.J., Latorre, C., Rech, J., Holmgren, C., English, N.B., and Matmon, A. Climate in the dry, central Andes over geologic, millennial, and interannual timescales. Annals of the Missouri Botanical Garden 96, (2009). 386397.Google Scholar
Pretti, V.A., and Stewart, B.W. Solute sources and chemical weathering in the Owens Lake watershed, eastern California. Water Resources Research 38, (2002). 1127 Google Scholar
Quade, J., Rech, J.A., Betancourt, J.L., Latorre, C., Quade, B., Rylander, K.A., and Fisher, T. Paleowetlands and regional climate change in the central Atacama Desert, northern Chile. Quaternary Research 69, (2008). 343360.Google Scholar
Roche, M.A., Bourges, J., Cortes, J., and Mattos, R. Climatology and hydrology of the Lake Titicaca Basin. Dejoux, C., and Iltis, A. Lake Titicaca: a Synthesis of Limnological Knowledge. (1992). Kluwer Academic Publishers, Dordrecht, Holland. 6388.Google Scholar
Rondeau, B., (1990). Géochemie istopique et géochronologie des stromatolite lacustres quaternaries de l'Altiplano bolivien. Ph.D. thesis, Université du Québec à Montréal, 100 pp.Google Scholar
Samos, G. Some observations on exchange of CO2 between BaCO3 and CO2 gas. Science 110, (1949). 663665.Google Scholar
Seltzer, G.O., Rodbell, D.T., and Wright, H.E. Late-quaternary paleoclimates of the southern Tropical Andes and adjacent regions. Palaeogeography Palaeoclimatolgy Palaeoecology 194, (2003). 13.Google Scholar
Servant, M., and Fontes, J.C. Les lacs quaternaries des hautes plateaux des Andes boliviennes: Cahier de l'ORSTROM. Série Géologie 10, (1978). 7997.Google Scholar
Smith, J.A., Seltzer, G.O., Rodbell, D.T., Farber, D.L., and Finkel, R.C. Early local last glacial maximum in the tropical Andes. Science 308, (2005). 678681.Google Scholar
Sylvestre, F., Servant, M., Servant-Vildary, S., Causse, C., Fournier, M., and Ybert, J.P. Lake-level chronology on the southern Bolivian Altiplano (18–23°S) during late-Glacial time and the early Holocene. Quaternary Research 51, (1999). 281300.CrossRefGoogle Scholar
Vuille, M., Hardy, D.R., Braun, C., Keimig, F., and Bradley, R.S. Atmospheric circulation anomalies associated with 1996/1997 summer precipitation events on Sajama ice cap, Bolivia. Journal of Geophysical Research 103, (1998). 1119111204.Google Scholar
Vuille, M. Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. International Journal of Climatology 19, (1999). 15791600.3.0.CO;2-N>CrossRefGoogle Scholar
Vuille, M., Bradley, R.S., and Keimig, F. Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research 105, (2000). 12,44712,460.Google Scholar
Vuille, M., and Keimig, F. Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data. Journal of Climate 17, (2004). 33343348.Google Scholar
Zech, R., Kull, C., Kubik, P.W., and Veit, H. LGM and Late-glacial glacier advances in the Cordillera Real and Cochabamba (Bolivia) deduced from 10Be surface exposure dating. Climate of the Past 3, (2007). 623635.Google Scholar
Zolá, R.P., and Bengtsson, L. Three methods for determining the area-depth relationship of Lake Poopó, a large shallow lake in Bolivia. Lakes and reservoirs: research and management 12, (2007). 275284.Google Scholar
Zhou, J., and Lau, K.-M. Does a monsoon climate exist over South America?. Journal of Climate 11, (1998). 10201040.Google Scholar
Supplementary material: PDF

Placzek et al. Supplementary Material

Supplementary Material

Download Placzek et al. Supplementary Material(PDF)
PDF 2.8 MB