Published online by Cambridge University Press: 20 January 2017
Coupled records of Sr/Ca and oxygen isotope ratios (δ18O) of coral skeletons have been used to produce quantitative estimates of paleo-sea surface temperature (SST) and δ18O of surface seawater that can in some cases be converted to sea surface salinity (SSS). Two fossil corals from Kikai Island in the subtropical northwestern Pacific, a location affected by East Asian summer and winter monsoons, were analyzed to investigate differences between mid-Holocene and present-day SST and SSS. At 6180 cal yr BP, SSTs were roughly the same as today, both in summer and winter; δ18Oseawater and SSS values were higher both in summer (+ 0.5‰, +1.1 psu) and in winter (+ 0.2‰, + 0.6 psu) than modern values. At 7010 cal yr BP, SSTs were slightly cooler both in summer and winter (−0.8 and −0.6 °C), whereas δ18Oseawater and SSS had higher values in summer (+ 0.3‰, + 0.6 psu) and in winter (+ 0.8‰, + 1.9 psu) than present-day values. These results are consistent with other marine records for the mid-Holocene of the low and midlatitudes in the northwestern Pacific. Such regional conditions indicate that the East Asian summer and winter monsoons were more intense in the mid-Holocene, which was likely a function of the mid-Holocene insolation regime.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.