Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T03:40:25.293Z Has data issue: false hasContentIssue false

Improving Methodology for High-Resolution Reconstruction of Sea-Level Rise and Neotectonics by Paleoecological Analysis and AMS 14C Dating of Basal Peats

Published online by Cambridge University Press:  20 January 2017

Torbjörn E. Törnqvist
Affiliation:
The Netherlands Centre for Geo-ecological Research (ICG), Faculty of Geographical Sciences, Utrecht University, P.O. Box 80115, NL-3508 TC, Utrecht, The Netherlands
Mark H.M. van Ree
Affiliation:
The Netherlands Centre for Geo-ecological Research (ICG), Faculty of Geographical Sciences, Utrecht University, P.O. Box 80115, NL-3508 TC, Utrecht, The Netherlands
Ron van 't Veer
Affiliation:
The Netherlands Centre for Geo-ecological Research (ICG), Hugo de Vries Laboratory, University of Amsterdam, Kruislaan 318, NL-1098 SM, Amsterdam, The Netherlands
Bas van Geel
Affiliation:
The Netherlands Centre for Geo-ecological Research (ICG), Hugo de Vries Laboratory, University of Amsterdam, Kruislaan 318, NL-1098 SM, Amsterdam, The Netherlands

Abstract

Sea-level research in several submerging coastal regions has traditionally been based on 14C dating of basal peats that overlie a compaction-free substratum and can be related to paleo-(ground)water levels. Provided that an unequivocal relationship between (ground)water level and sea level can be assumed, this approach contains two sources of uncertainty: (1) the paleoenvironmental interpretation of samples is usually based on inherently inaccurate macroscopic descriptions in the field, and (2) 14C ages of bulk peat samples may be erroneous as a result of contamination. Due to the uncertainties in both the altitude and the age—the two crucial sources of evidence necessary to arrive at accurate sea-level curves—sea-level index points are therefore represented by considerable, but typically not quantified, error boxes. Accelerator mass spectrometry (AMS) opens new perspectives for this type of sea-level research, as illustrated by a paleoecological and AMS 14C study of basal peats from a small study area in the Rhine–Meuse Delta (The Netherlands), where previous (conventional) work revealed highly problematic results. A detailed macrofossil analysis has two purposes: (1) an inferred paleoecological succession indicates a relatively accurate level of paludification of the site, and hence rise of the (ground)water level; (2) suitable macrofossils from that specific level are then selected for AMS 14C dating. In spite of very small sample sizes, our results are consistent and indicate that this approach can constitute a step forward in high-resolution reconstruction of sea-level rise. The new results further enable a revision of Holocene (ground)water gradient lines for the Rhine–Meuse Delta. A knickpoint in these gradient lines can be related to the effect of faulting. This approach therefore also has considerable potential to unravel and quantify neotectonic activity in submerging coastal settings.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behre, K.-E., 1986. Analysis of botanical macro-remains. Sea-Level Research: A Manual for the Collection and Evaluation of Data. Geo Books, Norwich, p. 413–433.CrossRefGoogle Scholar
Belknap, D.F., Kraft, J.C., 1977. Holocene relative sea-level changes and coastal stratigraphic units on the northwest flank of the Baltimore Canyon trough geosyncline. Journal of Sedimentary Petrology. 47 610629.Google Scholar
Berendsen, H.J.A., 1982. De genese van het landschap in het zuiden van de provincie Utrecht, een fysisch-geografische studie. Utrechtse Geografische Studies. 25 1255.Google Scholar
Berendsen, H.J.A., 1984. Problems of lithostratigraphic classification of Holocene deposits in the perimarine area of the Netherlands. Geologie en Mijnbouw. 63 351354.Google Scholar
Bloom, A.L., Stuiver, M., 1963. Submergence of the Connecticut coast. Science. 139 332334.CrossRefGoogle ScholarPubMed
Clerkx, A. P. P. M., Van Dort, K. W., Hommel, P. W. F. M., Stortelder, A. H. F., Vrielink, J. G., De Waal, R. W., Wolf, R. J. A. M, 1994, Broekbossen van Nederland, Instituut voor Bos- en Natuuronderzoek/Staring Centrum. Wageningen. Google Scholar
Denys, L., Baeteman, C., 1995. Holocene evolution of relative sea level and local mean high water spring tides in Belgium—A first assessment. Marine Geology. 124 119.Google Scholar
Fletcher III, C.H., Van Pelt, J.E., Brush, G.S., Sherman, J., 1993. Tidal wetland record of Holocene sea-level movements and climate history. Palaeogeography, Palaeoclimatology, Palaeoecology. 102 177213.Google Scholar
Gehrels, W.R., Belknap, D.F., 1993. Neotectonic history of eastern Maine evaluated from historic sea-level data and14 . Geology. 21 615618.2.3.CO;2>CrossRefGoogle Scholar
Gehrels, W.R., Belknap, D.F., Kelley, J.T., 1996. Integrated high-precision analyses of Holocene relative sea-level changes: Lessons from the coast of Maine. Geological Society of America Bulletin. 108 10731088.Google Scholar
Geluk, M.C., Duin, E.J.Th., Dusar, M., Rijkers, R.H.B., Van den Berg, M.W., Van Rooijen, P., 1994. Stratigraphy and tectonics of the Roer Valley Graben. Geologie en Mijnbouw. 73 129141.Google Scholar
Gotjé, W, 1993, De Holocene Laagveenontwikkeling in de Randzone van de Nederlandse Kustvlakte (Noordoostpolder), Vrije Universiteit, Amsterdam. Google Scholar
Hegi, G., 1957. Illustrierte Flora von Mittel-Europa. Band III/1. Teil. Google Scholar
Hofstede, J.L.A., Berendsen, H.J.A., Janssen, C.R., 1989. Holocene palaeogeography and palaeoecology of the fluvial area near Maurik (Neder-Betuwe, The Netherlands). Geologie en Mijnbouw. 68 409419.Google Scholar
Jelgersma, S., 1961. Holocene sea level changes in the Netherlands. Mededelingen van de Geologische Stichting, Serie C. 6 1100.Google Scholar
Kearney, M.S., 1996. Sea-level change during the last thousand years in Chesapeake Bay. Journal of Coastal Research. 12 977983.Google Scholar
Kiden, P., 1995. Holocene relative sea-level change and crustal movement in the southwestern Netherlands. Marine Geology. 124 2141.Google Scholar
Kidson, C., 1982. Sea level changes in the Holocene. Quaternary Science Reviews. 1 121151.Google Scholar
, Heden en Verleden. Nederland naar Beneden??? Interim-Rapport over het Onderzoek naar Bodembeweging in Nederland, Rijkswaterstaat/Rijks Lorenz, G. K., Groenewoud, W., Schokking, F., Van den Berg, M. W., Wiersma, J., Brouwer, F. J. J., Jelgersma, S, 1991. Geologische Dienst, Delft/Haarlem/Rijswijk.Google Scholar
Moore, P.D., 1984. European Mires. Academic Press, London. Google Scholar
1989. NEN 5104 Geotechniek. Classificatie van Onverharde Grondmonsters. Nederlands Normalisatie-instituut, Delft. Google Scholar
Nelson, A.R., Shennan, I., Long, A.J., 1996. Identifying coseismic subsidence in tidal-wetland stratigraphic sequences at the Cascadia subduction zone of western North America. Journal of Geophysical Research. 101 61156135.Google Scholar
Oberdorfer, E., 1983. Pflanzensoziologische Excursionsflora. Eugen Ulmer, Stuttgart. Google Scholar
Oele, E., Apon, W., Fischer, M. M., Hoogendoorn, R., Mesdag, C. S., De Mulder, E. F. J., Overzee, B., Sesören, A., Westerhoff, W. E, 1983, Surveying The Netherlands: Sampling techniques, maps and their applications, In, Special Issue in the Honour of de Jong, J. D., van, M. W., Berg, den, Felix, R., Geologie en Mijnbouw . 62, 355, 372.Google Scholar
Pals, J.P., Van Geel, B., Delfos, A., 1980. Paleoecological studies in the Klokkeweel bog near Hoogkarspel (prov. of Noord-Holland). Review of Palaeobotany and Palynology. 30 371418.Google Scholar
Shennan, I., Long, A.J., Rutherford, M.M., Green, F.M., Innes, J.B., Lloyd, J.M., Zong, Y., Walker, K.J., 1996. Tidal marsh stratigraphy, sea-level change and large earthquakes, I: A 5000 year record in Washington, U.S.A. Quaternary Science Reviews. 15 10231059.CrossRefGoogle Scholar
Steenbeek, R, 1990, On the Balance between Wet and Dry. Vegetation Horizon Development and Prehistoric Occupation; a Palaeoecological-Micromorphological Study in the Dutch River Area. Vrije Universiteit, Amsterdam. Google Scholar
Törnqvist, T.E., 1993. Fluvial sedimentary geology and chronology of the Holocene Rhine–Meuse delta, The Netherlands. Nederlandse Geografische Studies. 166 1169.Google Scholar
Törnqvist, T. E., Bierkens, M. F. P, 1994, How smooth should curves be for calibrating radiocarbon ages?, Radiocarbon . 36, 11, 26.Google Scholar
Törnqvist, T.E., De Jong, A.F.M., Oosterbaan, W.A., Van der Borg, K., 1992. Accurate dating of organic deposits by AMS14 . Radiocarbon. 34 566577.Google Scholar
Törnqvist, T. E., Weerts, H. J. T., Berendsen, H. J. A, 1994, Definition of two new members in the upper Kreftenheye and Twente Formations (Quaternary, the Netherlands): A final solution to persistent confusion?, Geologie en Mijnbouw . 72, 251, 264.Google Scholar
Van den Berg, M.W., Groenewoud, W., Lorenz, G.K., Lubbers, P.J., Brus, D.J., Kroonenberg, S.B., 1994. Patterns and velocities of recent crustal movements in the Dutch part of the Roer Valley rift system. Geologie en Mijnbouw. 73 157168.Google Scholar
Van de Plassche, O., 1980. Holocene water-level changes in the Rhine–Meuse delta as a function of changes in relative sea level, local tidal range, and river gradient. Geologie en Mijnbouw. 59 343351.Google Scholar
Van de Plassche, O., 1980. Compaction and other sources of error in obtaining sea-level data: Some results and consequences. Eiszeitalter und Gegenwart. 30 171181.Google Scholar
Van de Plassche, O., 1982. Sea-level change and water-level movements in the Netherlands during the Holocene. Mededelingen Rijks Geologische Dienst. 36 193.Google Scholar
Van de Plassche, O., 1982. Significance of a new basal peat date for the trend of Holocene mean sea level rise in The Netherlands. Geologie en Mijnbouw. 61 397399.Google Scholar
Van de Plassche, O., 1986. Introduction. van de Plassche, O., Sea-Level Research: A Manual for the Collection and Evaluation of Data. Geo Books, Norwich, 126.Google Scholar
Van de Plassche, O., 1995. Evolution of the intra-coastal tidal range in the Rhine–Meuse delta and Flevo Lagoon, 5700–3000 yrs cal B.C. Marine Geology. 124 113128.Google Scholar
Van de Plassche, O., Mook, W.G., Bloom, A.L., 1989. Submergence of coastal Connecticut 6000–3000 (14 . Marine Geology. 86 349354.CrossRefGoogle Scholar
Van der Borg, K., Alderliesten, C., Houston, C.M., De Jong, A.F.M., Van Zwol, N.A., 1987. Accelerator mass spectrometry with14 10 . Nuclear Instruments and Methods in Physics Research. B29 143145.CrossRefGoogle Scholar
Van der Plicht, J., 1993. The Groningen radiocarbon calibration program. Radiocarbon. 35 231237.Google Scholar
Van der Woude, J.D., 1985. Two mid-Holocene millenia of swamp forest in the Rhine/Meuse deltaic plain. Boreas. 14 267272.CrossRefGoogle Scholar
Van Dijk, G.J., Berendsen, H.J.A., Roeleveld, W., 1991. Holocene water level development in The Netherlands’ river area; implications for sea-level reconstruction. Geologie en Mijnbouw. 70 311326.Google Scholar
Van Eck, T., Davenport, C.A., 1994. Seismotectonics and seismic hazard in the Roer Valley Graben; with emphasis on the Roermond earthquake of April 13, 1992. Geologie en Mijnbouw. 73 91438.Google Scholar
Van Geel, B., Hallewas, D.P., Pals, J.P., 1983. A Late Holocene deposit under the Westfriese Zeedijk near Enkhuizen (Prov. of Noord-Holland, The Netherlands): Palaeoecological and archaeological aspects. Review of Palaeobotany and Palynology. 38 269335.Google Scholar
Van Montfrans, H.M., 1975. Toelichting bij de ondiepe breukenkaart met diepteligging van de Formatie van Maassluis. Zagwijn, W.H., van Staalduinen, C.J., Toelichting bij Geologische Overzichtskaarten van Nederland. Rijks Geologische Dienst, Haarlem, 103108.Google Scholar
Verbraeck, A., 1984. Toelichtingen bij de Geologische Kaart van Nederland 1:50.000. Blad Tiel West (39 W) en Blad Tiel Oost (39 O). Rijks Geologische Dienst, Haarlem. Google Scholar
Weeda, E.J., Westra, R., Westra, Ch., Westra, T., 1985. Nederlandse Oecologische Flora. Wilde Planten en hun Relaties 1. IVN, Amsterdam. Google Scholar
Weeda, E.J., Westra, R., Westra, Ch., Westra, T., 1987. Nederlandse Oecologische Flora. Wilde Planten en hun Relaties 2. IVN, Amsterdam. Google Scholar
Weeda, E.J., Westra, R., Westra, Ch., Westra, T., 1994. Nederlandse Oecologische Flora. Wilde Planten en hun Relaties 5. IVN, Amsterdam. Google Scholar
Weerts, H.J.T., Berendsen, H.J.A., 1995. Late Weichselian and Holocene fluvial palaeogeography of the southern Rhine–Meuse delta (the Netherlands). Geologie en Mijnbouw. 74 199212.Google Scholar
Westhoff, V., Den Held, A.J., 1969. Plantengemeenschappen in Nederland. Thieme, Zutphen. Google Scholar