Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T16:57:30.595Z Has data issue: false hasContentIssue false

Implications of Late Pleistocene Glaciation of the Tibetan Plateau for Present-Day Uplift Rates and Gravity Anomalies

Published online by Cambridge University Press:  20 January 2017

Georg Kaufmann
Affiliation:
Research School of Earth Sciences, Australian National University, Canberra, ACT, 0200, Australia
Kurt Lambeck
Affiliation:
Research School of Earth Sciences, Australian National University, Canberra, ACT, 0200, Australia

Abstract

Minimal and maximal models of Late Pleistocene Glaciation on the Tibetan Plateau are considered. The large ice sheet models indicate that disintegration of the ice sheet could have contributed up to 7 mm/yr of present vertical uplift and 2 mm/yr of horizontal extension. The former value can account for more than 50% of the observed uplift in central Tibet. The peak free-air gravity anomaly arising from the deglaciation would be around −5.4 mGal. In contrast, the smaller ice sheet models do not contribute significantly to the signals of present uplift and gravity anomalies. Modern geodetic measurements therefore have the potential to constrain the Late Pleistocene glaciation of the Tibetan Plateau. Assuming a large ice sheet over the Tibetan Plateau, the disintegration can contribute up to 6 m of eustatic sea-level rise.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amano, K., Taira, A., (1992). Two-phase uplift of Higher Himalayas since 17 ma. Geology. 20, 391394.2.3.CO;2>CrossRefGoogle Scholar
Burbank, D.W., (1992). Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature. 357, 680683.CrossRefGoogle Scholar
Copeland, P., Harrison, T.M., (1990). Episodic rapid uplift in the Himalaya revealed by40 39 . Geology. 18, 354357.2.3.CO;2>CrossRefGoogle Scholar
Cui, Z., (1964). On the problem of Pleistocene ice cover patterns in west China. Acta Geographica Sinica. 44, 2.Google Scholar
Denton, G.H., Hughes, T.J., (1981). The Last Great Ice Sheets. Wiley, New York. Google Scholar
Derbyshire, E., Shi, Y., Li, J., Zheng, B., Li, S., Wang, J., (1991). Quaternary glaciation of Tibet: the geological evidence. Quaternary Science Reviews. 10, 485510.CrossRefGoogle Scholar
Dziewonski, A.M., Anderson, D.L., (1981). Preliminary reference Earth model. Physics of the Earth and Planetetary Interiors. 25, 279356.Google Scholar
Ekman, M., (1996). A consistent map of the postglacial uplift of Fennoscandia. Terra Nova. 8, 158165.CrossRefGoogle Scholar
Ekman, M., Mäkinen, J., (1996). Recent postglacial rebound, gravity change and mantle flow in Fennoscandia. Geophysical Journal International. 126, 229234.CrossRefGoogle Scholar
Fairbanks, R.G., (1989). A 17000-year glacio–eustatic sea-level record: influence of glacial melting rates on the younger Dryas event and deep-ocean circulation. Nature. 342, 637642.CrossRefGoogle Scholar
Gupta, S.K., Sharma, P., Shah, S.K., (1992). Source of freshwater influx at LGM in the Indian Ocean: an alternative interpretation. Journal of Quaternary Science. 7, 247255.CrossRefGoogle Scholar
Gupta, S.K., Sharma, P., Shah, S.K., (1992). Constraints on ice sheet thickness over Tibet during the last 40000 years. Journal of Quaternary Science. 7, 283290.CrossRefGoogle Scholar
Harrison, T.M., Copeland, P., Kidd, W.S.F., Yin, A., (1992). Raising Tibet. Science. 255, 16631670.CrossRefGoogle ScholarPubMed
Hedin, S., (1922). Southern Tibet. Genesalstabens Litografiska anstalt, Stockholm. Google Scholar
Huntington, E., (1906). Pangong: A glacial lake in the Tibetan Plateau. Journal of Geology. 14, 599617.CrossRefGoogle Scholar
Huybrechts, P., (1992). The Antarctic Ice Sheet and Environmental Change: A Three-Dimensional Modelling Study. Ber. Polar-forschung 99, Bremerhaven. Google Scholar
Jackson, M., Bilham, R., (1994). Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet. Journal of Geophysical Research. 99, 13,89713,912.CrossRefGoogle Scholar
Johnston, P., (1993). The effect of spatially non-uniform water loads on prediction of sea-level change. Geophysical Journal International. 114, 615634.CrossRefGoogle Scholar
Kaufmann, G., (1997). The onset of Pleistocene glaciation in the Barents Sea: implications for glacial isostatic adjustment. Geophysical Journal International. 131, 281292.CrossRefGoogle Scholar
Kuhle, M., (1988). Zur Auslöserrolle Tibets bei der Entstehung der Eiszeiten. Spektrum der Wissenschaft. 1, 1620.Google Scholar
Kuhle, M., (1988). The Pleistocene glaciation of Tibet and the onset of ice ages: an autocycle hypothesis. GeoJournal. 17, 581595.CrossRefGoogle Scholar
Kuhle, M., (1988). Geomorphological findings on the build-up of Pleistocene glaciation in southern Tibet and on the problem of inland ice; results of the Shisha Pangma and Mt. Everest Expedition 1984. GeoJournal. 17, 457511.Google Scholar
Kuhle, M., Herterich, K., Calov, R., (1989). On the ice age glaciation of the Tibetan Highlands and its transformation into a 3-D model. GeoJournal. 19, 201206.CrossRefGoogle Scholar
Lambeck, K., (1988). Geophysical Geodesy. The Slow Deformations of the Earth. Oxford Univ. Press, Oxford. Google Scholar
Lambeck, K., (1996). Limits on the areal extent of the Barents Sea ice sheet in Late Weichselian time. Global and Planetary Change. 12, 4151.CrossRefGoogle Scholar
Lambeck, K., Johnston, P., Nakada, M., (1990). Holocene glacial rebound and sea-level change in NW Europe. Geophysical Journal International. 103, 451468.CrossRefGoogle Scholar
Lambeck, K., Johnston, P., Smither, C., Nakada, M., (1996). Glacial rebound of the British Isles: III. Constraints on mantle viscosity. Geophysical Journal International. 125, 340354.CrossRefGoogle Scholar
Lerch, F.S., Klosko, S.M., Laubscher, R.E., Wagner, C.A., (1979). Gravity model improvement using GEOS 3 (GEM 9 and GEM 10). Journal of Geophysical Research. 84, 38973916.CrossRefGoogle Scholar
Longman, I.M., (1962). A Green's function for determining the deformation of the Earth under surface mass loads. Journal of Geophysical Research. 67, 845850.CrossRefGoogle Scholar
Love, A.E.H., (1911). Some Problems of Geodynamics. Cambridge Univ. Press, Cambridge. Google Scholar
Luo, L., Yang, Y., (1963). Analysis of geomorphological development in Western Sichuan and Northern Yunan. Geographical Essay. Science Press, Beijing. Google Scholar
Mitrovica, J.X., (1996). Haskell [1935] revisited. Journal of Geophysical Research. 101, 555569.CrossRefGoogle Scholar
Mitrovica, J.X., Davis, J.L., (1995). The influence of a finite glaciation phase on predictions of post-glacial isostatic adjustment. Earth and Planetary Science Letters. 136, 343361.CrossRefGoogle Scholar
Mitrovica, J.X., Peltier, W.R., (1989). Pleistocene deglaciation and the global gravity field. Journal of Geophysical Research. 94, 13,65113,671.CrossRefGoogle Scholar
Mitrovica, J.X., Davis, J.L., Shapiro, I.I., (1994). A spectral formalism for computing three-dimensional deformations due to surface loads 1. Theory. Journal of Geophysical Research. 99, 70577073.CrossRefGoogle Scholar
Molnar, P., (1987). Inversion profiles of uplift rates for the geometry of dip-slip faults at depth, with examples from the Alps and the Himalayas. Annales Geophysicae. 5, 663670.Google Scholar
Molnar, P., England, P., (1990). Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?. Nature. 346, 2934.CrossRefGoogle Scholar
Nakada, M., Lambeck, K., (1987). Glacial rebound and relative sea-level variations: a new appraisal. Geophysical Journal of the Royal Astronomical Society. 90, 171224.CrossRefGoogle Scholar
Nakada, M., Lambeck, K., (1988). The melting history of the late Pleistocene Antarctic ice sheet. Nature. 333, 3640.CrossRefGoogle Scholar
Peltier, W.R., (1974). The impulse response of a Maxwell Earth. Reviews of Geophysics and Space Science. 12, 649669.CrossRefGoogle Scholar
Peltier, W.R., (1994). Ice age paleotopography. Science. 265, 195201.CrossRefGoogle ScholarPubMed
Richards, M.A., Hager, B.H., (1984). Geoid anomalies in a dynamic Earth. Journal of Geophysical Research. 89, 59876002.CrossRefGoogle Scholar
Rind, D., Peteet, D., (1985). Terrestrial conditions in the last glacial maximum and CLIMAP sea surface temperature estimates: Are they consistent. Quaternary Research. 24, 122.CrossRefGoogle Scholar
Rutter, N., (1995). Problematic ice sheets. Quaternary International. 28, 1937.CrossRefGoogle Scholar
Schneider, H.-J., (1957). Tektonik and Magmatismus im NW-Karakorum. Geologische Rundschau. 46, 426476.CrossRefGoogle Scholar
Shi, Y., (1992). Glaciers and glacial geomorphology in China. Zeitschift für Geomosphologie N. F.. 86, 5163.Google Scholar
Shi, Y., Ren, B., Wang, J., Derbyshire, E., (1986). Quaternary glaciation in China. Quaternary Science Reviews. 5, 503507.CrossRefGoogle Scholar
Sinitzin, V.M., (1958). Central Asia. Central Publishing House, Moscow. Google Scholar
Sun, D., Wu, X., (1986). Preliminary study of Quaternary tectono-climatic cycles in China. Quaternary Science Reviews. 5, 497501.Google Scholar
Tafel, A., (1908). Vorläufiger Bericht über eine Studienreise in Nord-West-China and Ost-Tibet. Zeitschrift für GEB. 377395.Google Scholar
Trinkler, E., (1930). Ice age on the Tibetan Plateau and in the adjacent region. Geographical Journal. 75, 225232.CrossRefGoogle Scholar
Tushingham, A.M., Peltier, W.R., (1991). Ice-3G: a new global model of late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change. Journal of Geophysical Research. 96, 44974523.CrossRefGoogle Scholar
von Wissmann, H., (1959). Heutige Vergletscherung und Schneegrenze in Hochasien. Akademie der Wissenschaften und der Literatur in Mainz, Mathematisch-Naturwissenschaftliche Klasse, Abhandlungen. 11, 11031407.Google Scholar
Wang, M., Zheng, M., (1965). Remnants of quaternary glaciation on the Tibetan Plateau. Acta Geographica Sinica. 31, 6372.Google Scholar
Ward, F.K., (1934). The Himalaya east of the Tsangpo. Geographical Journal. 84, 369397.CrossRefGoogle Scholar
Wessel, P., Smith, W.H.F., (1991). Free software helps map and display data. EOS. 72, 441446.CrossRefGoogle Scholar
Zeitler, P.K., (1985). Cooling history of the NW Himalaya, Pakistan. Tectonics. 4, 127151.CrossRefGoogle Scholar
Zheng, B., (1989). Controversy regarding the existence of a large ice sheet on the Qinghai–Xizang (Tibetan) Plateau during the Quaternary period. Quaternary Research. 32, 121123.Google Scholar
Zheng, B., Li, J., (1981). Quaternary glaciation of the Qinghai–Xizang Plateau. Geological and Ecological Studies of Qinghai-Xizang Plateau. Science Press, Bejing, p. 16311640.Google Scholar