Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T02:04:32.392Z Has data issue: false hasContentIssue false

Impact of the Late Glacial Eruption of the Laacher See Volcano, Central Rhineland, Germany

Published online by Cambridge University Press:  20 January 2017

Michael Baales
Affiliation:
Forschungsbereich Altsteinzeit des Römisch-Germanischen Zentralmuseums Mainz, Schloss Monrepos, Neuwied, 56567, Germany
Olaf Jöris*
Affiliation:
Forschungsbereich Altsteinzeit des Römisch-Germanischen Zentralmuseums Mainz, Schloss Monrepos, Neuwied, 56567, Germany
Martin Street
Affiliation:
Forschungsbereich Altsteinzeit des Römisch-Germanischen Zentralmuseums Mainz, Schloss Monrepos, Neuwied, 56567, Germany
Felix Bittmann
Affiliation:
Niedersächsisches Institut für historische Küstenforschung, Viktoriastrasse 26/28, Wilhelmshaven, 26382, Germany
Bernhard Weninger
Affiliation:
14C-Labor am Institut für Ur- und Frühgeschichte, Universität zu Köln, Weyertal 125, Köln, 50923, Germany
Julian Wiethold
Affiliation:
Abteilung für Palynologie und Quartärwissenschaften, Institut der Archäologischen Kommisssion für Hessen e.V. Schloss Biebrich-Ostflügel, Wiesbaden, 65203, Germany
*
1To whom correspondence should be addressed. Fax: ++49 2631 76357. E-mail: [email protected].

Abstract

Within a period of a few weeks toward the end of the Allerød Interstadial, the major Plinian eruption of the Laacher See volcano produced some 20 km3 of eruptiva, covering and preserving the late-glacial landscape in the German Central Rhineland over an area of more than 1000 km2. Correlation of terrestrial archives with the Greenland ice-core records and improved calibration of the radiocarbon timescale permit a precise, accurate age determination of the Laacher See event some 200 yr before the onset of the Younger Dryas cold episode. Carbonized trees and botanical macrofossils preserved by Laacher See Tephra permit detailed regional paleoenvironmental reconstruction and show that open woodland were typical for the cool and humid hemiboreal climatic conditions during the late Allerød. This woodland provided the habitat for a large variety of animal species, documented at both paleontological and Final Paleolithic archeological sites preserved below Laacher See deposits. Of special interest are numerous animal tracks intercalated in Middle Laacher See deposits at the south of the Neuwied Basin. This knowledge may help to evaluate possible supraregional impacts of this volcanic event on northern hemispheric environment and climate during the late Allerød.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agricola, G. (1546). De natura fossilium. trans. by, Fraustadt, G., (1958). Berlin.Google Scholar
Alley, R.B., Meese, D.A., Shuman, C.A., Gow, A.J., Taylor, K.C., Grootes, P.M., White, J.W.C., Ram, M., Waddington, E.D., Mayewski, P.A., and Zielinski, G.A. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, (1993). 527 529.Google Scholar
Andres, W., and Litt, T. Editorial: Termination I in Europe. Quaternary International 61, (1999). 1 4.Google Scholar
Atkinson, T.C., Briffa, K.R., and Coope, G.R. Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. Nature 325, (1987). 587 592.CrossRefGoogle Scholar
Baales, M., and von Berg, A. Tierfährten in der allerødzeitlichen Vulkanasche des Laacher See-Vulkans bei Mertloch, Kreis Mayen-Koblenz. Archäologisches Korrespondenzblatt 27, (1997). 1 12.Google Scholar
Baales, M., and von Berg, A. Völlig unerwartet: Tierfährten von Pferden, Braunbären, Rot- und Auerwild in Ablagerungen des allerødzeitlichen Laacher See-Vulkans (ca. 12.9 ky cal BP) bei Mertloch (Kr. Mayen-Koblenz, Neuwieder Becken, Rheinland-Pfalz, Deutschland). Tier und Museum 6, (1999). 68 74.Google Scholar
Baales, M., and Jöris, O.2002. Zwischen Nord und Süd. Ein spätallerødzeitlicher Rückenspitzen-Fundplatz bei Bad Breisig, Kr. Ahrweiler (Mittelrhein, Rheinland-Pfalz). Die Kunde N. F. 522001, 275–291.Google Scholar
Baales, M., Bittmann, F., and Kromer, B. Verkohlte Bäume im Trass der Laacher See-Tephra bei Kruft (Neuwieder Becken). Ein Beitrag zur Datierung des Laacher See-Ereignisses und zur Vegetation der Allerød-Zeit am Mittelrhein. Archäologisches Korrespondenzblatt 28, (1998). 191 204.Google Scholar
Baales, M., Grimm, S., and Jöris, O. Hunters of the “Golden Mile.” The late Allerød Federmessergruppen Site at Bad Breisig, Central Rhineland, Germany. Notae Praehistoricae 21, (2001). 67 72.Google Scholar
Birks, H.J.B., and Lotter, A.F. The impact of the Laacher See Volcano (11 000 yr B.B.) on terrestrial vegetation and diatoms. Journal of Paleolimnology 11, (1994). 313 322.Google Scholar
Björck, S., Walker, M.J.C., Cwynar, L.C., Johnsen, S., Knudsen, K.-L., Lowe, J.J., and Wohlfarth, B. An event stratigraphy for the last termination in the North Atlantic region based on the Greenland Ice-Core Record: A proposal by the INTIMATE group. Journal of Quaternary Science 13, (1998). 283 292.Google Scholar
Brauer, A., Endres, C., Günter, C., Litt, T., Stebich, M., and Negendank, F.F.W. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quaternary Science Reviews 18, (1999). 321 329.Google Scholar
Broecker, W.S. Defining the boundaries of the Late Glacial isotope episodes. Quaternary Research 38, (1992). 135 138.Google Scholar
Brunnacker, K., Fruth, H.-J., Juvigné, E., and Urban, B. Spätpaläolithische Funde aus Thür, Kreis Mayen-Koblenz. Archäologisches Korrespondenzblatt 16, (1982). 417 427.Google Scholar
Coope, G.R., Lemdahl, G., Lowe, J.J., and Walking, A. Temperature gradients in northern Europe during the last glacial-Holocene transition (14–9 14C kyr BP) interpreted from coleopteran assemblages. Journal of Quaternary Science 13, (1998). 419 433.Google Scholar
Firbas, F. Das absolute Alter der jüngsten vulkanischen Eruptionen im Bereich des Laacher Sees. Die Naturwissenschaften 40, (1953). 54 55.CrossRefGoogle Scholar
Frechen, J. Die Herkunft der spätglazialen Bimstuffe in mittel-und süddeutschen Mooren. Geologisches Jahrbuch 67, (1952). 209 230.Google Scholar
Frechen, J. (1953). Der rheinische Bimsstein. Fischer, G., Wittlich.Google Scholar
Frechen, J. Die Tuffe des Laacher Vulkangebietes als quartärgeologische Leitgesteine und Zeitmarken. Fortschritte der Geologie in Rheinland und Westfalen 4, (1959). 363 370.Google Scholar
Freundt, A., and Schmincke, H.-U. Emplacement of small-volume pyroclastic flows at Laacher See (East-Eifel, Germany). Bulletin of Volcanology 48, (1986). 1 60.Google Scholar
Friedrich, M., Kromer, B., Spurk, M., Hofmann, J., and Kaiser, K.F. Paleo-environment and radiocarbon calibration as derived from lateglacial/early holocene tree-ring chronologies. Quaternary International 61, (1999). 27 39.Google Scholar
Friedrich, M., Kromer, B., Spurk, M., Hofmann, J., Hughen, K.A., and Johnsen, S.J. High-resolution climate signals in the Bølling-Allerød Interstadial (Greenland Interstadial 1) as reflected in European treering chronologies compared to marine varves and ice-core records. Quaternary Science Reviews 20, (2001). 1223 1232.CrossRefGoogle Scholar
Fuchs, K, von Gehlen, K, Mälzer, H, Murawski, H, and Semmel, H. 1983, Plateau Uplift. The Rhenish Shield—A Case History, Springer-Verlag, Berlin/New York.Google Scholar
Goslar, T., Arnold, M., Bard, E., Kuc, T., Pazdur, M.F., Ralska-Jasiewiczowa, M., Rozanski, K., Tisnerat, N., Walanus, A., Wicik, B., and Wieckowski, K. High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377, (1995). 414 417.Google Scholar
Goslar, T., Arnold, M., Tisnerat-Laborde, N., Czernik, J., and Wieckowski, K. Variations of Younger Dryas atmospheric radiocarbon explicable without ocean circulation changes. Nature 403, (2000). 877 880.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S., and Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice core. Nature 366, (1993). 552 554.Google Scholar
Hajdas, I., Ivy-Ochs, S.D., Beer, J., Bonani, G., Imboden, D., Lotter, A.F., Sturm, M., and Suter, M. AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12 000 years BP. Climate Dynamics 9, (1993). 107 116.Google Scholar
Hajdas, I., Ivy-Ochs, S.D., and Bonani, G. Problems in the extension of the radiocarbon calibration curve (10–13 Kyr BP). Radiocarbon 37, (1995). 75 79.Google Scholar
Hedges, R.E.M., Housley, R.A., Bronk Ramsey, C., and van Klinken, G.J. Radiocarbon dates from the Oxford AMS system: Archaeometry Datelist 16. Archaeometry 35, (1993). 147 167.Google Scholar
Heine, K. Warmzeitliche Bodenbildung im Bölling/Alleröd im Mittelrheingebiet. Decheniana 146, (1993). 315 324.Google Scholar
Jöris, O., and Weninger, B. 14C-Alterskalibration und die absolute Chronologie des Spätglazials. Archäologisches Korrespondenzblatt 30, (2000). 461 471.Google Scholar
Jöris, O., and Weninger, B. Radiocarbon calibration and the absolute chronology of the Late Glacial. Valentin, B., Bodu, P., and Christensen, M. L 'Europe centrale et septentrionale au Tardiglaciaire. Confrontation des modèles régionaux de peuplement Kolloquium Nemours 1997. (2000). 19 54.Google Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Fuhrer, K., Gundestrup, N.S., Hammer, C.U., Iversen, P., Jouzel, J., Stauffer, B., and Steffensen, J.P. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, (1992). 311 313.Google Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Gundestrup, N.S., Hammer, C.U., Andersen, U., Andersen, K.K., Hvidberg, C.S., Dahl-Jensen, D., Steffensen, J.P., Shoji, H., Sveinbjörnsdóttir, A.E., White, J.W.C., Jouzel, J., and Fisher, D. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. Journal of Geophysical Research 102, (1997). 26,397 26,410.Google Scholar
Kaiser, K.F. Beiträge zur Klimageschichte vom späten Hochglazial bis ins frühe Holozän, rekonstruiert mit Jahrringen und Molluskenschalen aus verschiedenen Vereisungsgebieten. (1993). Ziegler, Birmensdorf.Google Scholar
Kalthoff, D.C. Die Kleinsäuger (Mammalia) der Fundstelle Ketting (Rheinland-Pfalz, Deutschland) im Rahmen der allerødzeitlichen Säugetierfauna Mittel-und Süddeutschlands. Paläontologische Zeitschrift 72, (1998). 407 424.Google Scholar
Kromer, B., Spurk, M., Remmele, S., Barbetti, M., and Toniello, V. Segments of atmospheric 14C change as derived from Late Glacial and Early Holocene floating tree-ring-series. Radiocarbon 40, (1998). 351 358.Google Scholar
Libby, W.F. Radiocarbon Dating. (1952). Univ. of Chicago Press, Chicago.Google Scholar
Litt, T., and Stebich, M. Bio- and chronostratigraphy of the Lateglacial in the Eifel region, Germany. Quaternary International 61, (1999). 5 16.Google Scholar
Lotter, A.F. Late-glacial and Holocene vegetation history and dynamics as shown by pollen and plant macrofossil analyses in annually laminated sediments from Soppensee, central Switzerland. Vegetational History and Archaeobotany 8, (1999). 165 184.Google Scholar
Lotter, A.F., and Birks, H.J. The impact of the Laacher See Tephra on terrestrial and aquatic ecosystems in the Black Forest, southern Germany. Journal of Quaternary Science 8, (1993). 263 276.Google Scholar
Lotter, A.F., and Zbinden, H. Late-glacial pollen analysis, oxygen-isotope record and radiocarbon stratigraphy from Rotsee (Lucerne), Central Swiss Plateaux. Eclogae Geologica Helvetica 82, (1989). 191 202.Google Scholar
Lotter, A.F., Eicher, U., Birks, H.J.B., and Siegenthaler, U. Late-glacial climatic oscillations as recorded in Swiss lake sediments. Journal of Quaternary Science 7, (1992). 187 204.Google Scholar
Merkt, J., and Müller, H. Varve chronology and palynology of the Lateglacial in Northwest Germany from lacustrine sediments of Hämelsee in Lower Saxony. Quaternary International 61, (1999). 41 59.Google Scholar
Mordziol, C. Abhandlungen des Naturwissenschaftlichen Vereins in Koblenz für 1930. Beiträge zur Geologie der Rheinlande 2. (1931). H. L. Scheid, Koblenz.Google Scholar
Mordziol, C. Beiträge zur Naturdenkmalpflege XIV. Die Laacher Bimsdecke im Zusammenhang mit der rheinischen Diluvialchronologie. (1931). Wolf, Berlin.Google Scholar
Park, C., and Schmincke, H.-U. Lake formation and catastrophic dam burst during the Late Pleistocene Laacher See eruption (Germany). Naturwissenschaften 84, (1997). 521 525.Google Scholar
Raikes, S., and Bonjer, K. P. (1983). Large-scale mantle heterogeneity beneath the Rhenish Massif and its vicinity from teleseismic presiduals measurements.. In Plateau Uplift. The Rhenish Shield—A Case HistoryK. Fuchs, H. Mälzer, H. Murawski, and H. Samuels, Eds., pp. 315331. Springer-Verlag, Berlin/New York.Google Scholar
Ritter, J.R.R., Jordan, M., Christensen, U.R., and Achauer, U. A mantle plume below the Eifel volcanic fields, Germany. Earth and Planetary Science Letters 186, (2001). 7 14.Google Scholar
Rubin, M., and Alexander, C. U.S. Geological Survey radiocarbon dates V. American Journal of Science, Radiocarbon Supplement 2, (1960). 129 176.CrossRefGoogle Scholar
Schirmer, W. Die Goldene Meile. Schirmer, W. Rheingeschichte zwischen Mosel und Maas. (1990). Deuqua-Führer I. J. Wegener, Hannover. 94 98.Google Scholar
Schirmer, W. Rhein Traverse. Schirmer, W. Quaternary Field Trips in Central Europe. Volume 1: Regional Field Trips. (1995). International INQUA Congress Berlin. Dr. Friedrich Pfeil, Munich. 475 558.Google Scholar
Schmincke, H.-U. Vulkane im Laacher See-Gebiet. Ihre Entstehung und heutige Bedeutung. (1988). Bode, Haltern.Google Scholar
Schmincke, H.-U. Vulkanismus. (2000). Wissenschaftliche Buchgesellschaft, Darmstadt.Google Scholar
Schmincke, H.-U., van den Bogaard, P., and Freundt, A. International Volcanic Congress Mainz (FRG) 1990. Quaternary Eifel Volcanism. Excursion 1AI-Workshop on explosive volcanism. (1990). Pluto Press, Witten.Google Scholar
Schmincke, H.-U., Park, C., and Harms, E. Evolution and environmental impacts of the eruption of Laacher See volcano (Germany) 12 900 a BP. Quaternary International 61, (1999). 61 72.Google Scholar
Schweitzer, H.J. Entstehung und Flora des Trasses im nördlichen Laacher Seegebiet. Eiszeitalter and Gegenwart 9, (1958). 28 48.Google Scholar
Staiger, C. Zur Paläoökologie des allerödzeitlichen Fundplatzes Miesenheim II im Neuwieder Becken. (1988). Stuttgart-Hohenheim, Google Scholar
Street, M. Ein Wald der Allerödzeit bei Miesenheim, Stadt Andernach (Neuwieder Becken). Archäologisches Korrespondenzblatt 16, (1986). 13 22.Google Scholar
Street, M. Analysis of Late Palaeolithic and Mesolithic Faunal Assemblages in the Northern Rhineland, Germany. (1993). University of Birmingham, Google Scholar
Street, M. (1995). Evidence for late Allerød ecology conserved by Laacher See tephra: Miesenheim 2, Miesenheim 4, Thür, Brohl Valley sites, Glees, Krufter Ofen, Wingertsberg.. In The Palaeolithic and Mesolithic of the Rhineland Bosinski, G., Street, M., and Baales, M., Eds.; Quaternary Field Trips in Central Europe. Volume 2, : Field Trips on Special Topics Schirmer, W., Ed., pp. 928934. 14. International INQUA Congress Berlin. Dr. Friedrich Pfeil, Munich.Google Scholar
Street, M., and Baales, M. Pleistocene/Holocene changes in the Rhineland fauna in a northwest European context. Benecke, N. The Holocene History of the European Vertebrate Fauna. Modern Aspects of Research. (1999). 9 38.Google Scholar
Street, M., Baales, M., and Weninger, B. Absolute Chronologie des späten Paläolithikums und Frühmesolithikums im nördlichen Rheinland. Archäologisches Korrespondenzblatt 24, (1994). 1 28.Google Scholar
Stuiver, M., and Reimer, P.J. Extended C-14 Data Base and Revised CALIB 3.0 C-14 Age Calibration Program. Radiocarbon 35, (1993). 215 230.Google Scholar
Taylor, K.C., Lamorey, G.W., Doyle, G.A., Alley, R.B., Grootes, P.M., Mayewski, P.A., White, J.W.C., and Barlow, L.K. The “flickering switch” of late Pleistocene climate change. Nature 361, (1993). 432 436.Google Scholar
van den Bogaard, P. 40Ar/39Ar ages of sanidine phenocrysts from Laacher See Tephra (12,900 yr BP): Chronostratigraphic and petrologic significance. Earth and Planetary Science Letters 133, (1995). 163 174.Google Scholar
van den Bogaard, P., and Schmincke, H.-U. The eruptive center of the late Quaternary Laacher See Tephra. Geologische Rundschau 73, (1984). 935 982.Google Scholar
van den Bogaard, P., and Schmincke, H.-U. Laacher See Tephra: A widespread isochronous late Quaternary tephra layer in central and northern Europe. Geological Society of America Bulletin 96, (1985). 1554 1571.Google Scholar
Waldmann, G. Vulkanfossilien im Laacher Bims. (1996). Gregor and Unger, München.Google Scholar
Waldmann, G., Jöris, O., and Baales, M. Nach der Flut—Ein spätallerødzeitlicher Rückenspitzen-Fundplatz bei Bad Breisig (Kr. Ahrweiler, Rheinland-Pfalz). Archäologisches Korrespondenzblatt 31, (2001). 173 184.Google Scholar
Windheuser, H., and Brunnacker, K. Die Jüngste Eruption des Laacher See-Vulkans. Mainzer Naturwissenschaftliches Archiv 17, (1979). 29 40.Google Scholar
Zielinski, G.A., Mayewski, P.A., Meeker, L.D., Whitlow, S., Twickler, M.S., and Taylor, K. An 100,000-year Record of Explosive Volcanism from the GISP2 (Greenland) Ice Core. Quaternary Research 45, (1996). 109 118.CrossRefGoogle Scholar
Zolitschka, B. Spätquartäre Sedimentationsgeschichte des Meerfelder Maares (Westeifel). Mikrostratigraphie jahreszeitlich geschichteter Seesedimente. Eiszeitalter und Gegenwart 38, (1988). 87 93.Google Scholar
Zolitschka, B. (1990). Spätquartäre jahreszeitlich geschichtete Seesedimente ausgewählter Eifelmaare. Documenta naturae 60, Gregor and Unger, München.Google Scholar