Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T23:03:24.573Z Has data issue: false hasContentIssue false

Impact of lateral transport on organic proxies in the Southern Ocean

Published online by Cambridge University Press:  20 January 2017

Jung-Hyun Kim*
Affiliation:
Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Organic Biogeochemistry, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
Xavier Crosta
Affiliation:
EPOC-UMR 5805, Université de Bordeaux 1, Avenue des Facultés, 33405 Talence Cedex, France
Elisabeth Michel
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, CNRS, Gif-sur-Yvette, France
Stefan Schouten
Affiliation:
Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Organic Biogeochemistry, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
Josette Duprat
Affiliation:
EPOC-UMR 5805, Université de Bordeaux 1, Avenue des Facultés, 33405 Talence Cedex, France
Jaap S. Sinninghe Damsté
Affiliation:
Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Organic Biogeochemistry, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
*
Corresponding author. Fax: +31 0 222 319674. Email Address:[email protected] (J.-H. Kim).

Abstract

Lateral transport of fine-grained organic carbon particles can complicate the interpretation of paleoclimate records based on organic proxies. Here we investigated the effect of lateral transport on newly developed temperature and soil organic matter proxies, TEX86 and BIT index, respectively, in core MD88–769 recovered from the South East Indian Ridge. Our results show that TEX86 and BIT records in comparison to diatom and foraminifera records were representative for more local climate changes while alkenones and n-alkanes originated from distant areas by oceanic and atmospheric transport, respectively. This suggests that TEX86 and BIT paleoclimate records are primarily influenced by local conditions and less subjected to long-distance lateral transport than other organic proxies in the Southern Ocean.

Type
Short paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, K.K., Armengaud, A., and Genthon, C. Atmospheric dust under glacial and interglacial conditions. Geophysical Research Letters 25, (1998). 22812284.Google Scholar
Armand, L.K., Crosta, X., Romero, O., and Pichon, J.J. The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species. Palaeogeography, Palaeoclimatology, Palaeoecology 223, (2005). 93126.CrossRefGoogle Scholar
Armand, L.K., Crosta, X., Quéguiner, B., Mosseri, J., and Garcia, N. Diatoms preserved in surface sediments of the northeastern Kerguelen Plateau. Deep-Sea Research II 55, (2008). 653676.Google Scholar
Balco, G., (2007). A surprisingly large marine ice cap at Heard Island during the last glacial maximum?. U.S. Geological Survey and The National Academies, ; USGS OF-2007-1047, Extended Abstract 147.Google Scholar
Basile, G., Grousset, F.E., Revel, M., Petit, J.B., Biscaye, P.E., and Barkov, N.I. Patagonian origin of glacial dust deposited in East Antarctica (Vostok, Dome C) during glacial stages 2, 4, and 6. Earth and Planetary Science Letters 146, (1997). 573590.Google Scholar
Benthien, A., and Müller, P.J. Anomalously low alkenone temperatures caused by lateral particle and sediment transport in the Malvinas Current region, western Argentine Basin. Deep-Sea Research I 47, (2000). 23692393.CrossRefGoogle Scholar
Brassell, S.C., Eglinton, G., Marlowe, I.T., Pflaumann, U., and Sarnthein, M. Molecular stratigraphy: a new tool for climatic assessment. Nature 320, (1986). 129133.Google Scholar
Conkright, M.E., Antonov, J.I., Baranova, O., Boyer, T.P., Garcia, H.E., Gelfeld, R., Johnson, D., Locarnini, R.A., Murphy, P.P., O'Brien, T.D., Smolyar, I., and Stephens, C. World Ocean Database 2001. Levitus, Sydney. NOAA Atlas NESDIS 42 Vol. 1, (2002). U.S. Government Printing Office, Washington, D.C.. 167 Google Scholar
Crosta, X., Sturm, A., Armand, L., and Pichon, J.J. Late Quaternary sea ice history in the Indian sector of the Southern Ocean as recorded by diatom assemblages. Marine Micropaleontology 50, (2004). 209223.Google Scholar
Crosta, X., Shemesh, A., Etourneau, J., Yam, R., Billy, I., and Pichon, J.J. Nutrient cycling in the Indian sector of the Southern Ocean over the last 50,000 years. Global Biogeochemical Cycles 19, (2005). GB3007 http://dx.doi.org/10.1029/2004GB002344 Google Scholar
Delmonte, B., Petit, J.R., and Maggi, V. Glacial to Holocene implications of the new 27000-year dust record from the EPICA Dome C (East Antarctica) ice core. Climate Dynamics 18, (2002). 647660.Google Scholar
Dezileau, L., Bareille, G., Reyss, J.L., and Lemoine, F. Evidence for strong sediment redistribution by bottom currents along the southeast Indian ridge. Deep-Sea Research I 47, (2000). 18991936.CrossRefGoogle Scholar
Eglinton, G., and Hamilton, R.J. Leaf epicuticular waxes. Science 156, (1967). 13221335.CrossRefGoogle ScholarPubMed
Frénot, Y., van Vliet-Lanoë, B., and Gloaguen, J.C. Particle translocation and initial soil development on a glacier foreland, Kerguelen Islands, Subantarctic. Arctic, Antarctic and Alpine Research 27, (1995). 107115.CrossRefGoogle Scholar
Hall, K. Late glacial ice cover and palaeotemperatures on sub-Antarctic Marion Island. Palaeogeography, Palaeoclimatology, Palaeoecology 29, (1979). 243259.Google Scholar
Hall, K. Evidence in favour of an extensive ice cover on subantartic Kerguelen Island during the last glacial. Palaeogeography, Palaeoclimatology, Palaeoecology 47, (1984). 225232.CrossRefGoogle Scholar
Hopmans, E.C., Weijers, J.W.H., Schefuβ, E., Herfort, L., Sinninghe Damsté, J.S., and Schouten, S. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoidtetraether lipids. Earth and Planetary Science Letters 224, (2004). 107116.CrossRefGoogle Scholar
Kim, J.-H., Schouten, S., Hopmans, E.C., Donner, B., and Sinninghe Damsté, J.S. Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochimica et Cosmochimica Acta 72, (2008). 11541173.CrossRefGoogle Scholar
Kim, J.-H., Buscail, R., Bourrin, F., Palanques, A., Sinninghe Damsté, J.S., Bonnin, J., and Schouten, S. Transport and depositional process of soil organic matter during wet and dry storms on the Têt inner shelf (NW Mediterranean). Palaeogeography, Palaeoclimatology, Palaeoecology (2008). http://dx.doi.org/10.1016/j.palaeo.2008.04.019 Google Scholar
Laws, R.A. Preparing strewn slides for quantitative microscopical analysis: a test using calibrated microspheres. Micropaleontology 24, (1983). 6065.CrossRefGoogle Scholar
Mazurek, M.A., and Simoneit, B.R.T. Characterization of biogenic and petroleum-derived organic matter in aerosols over remote, rural and urban areas. Keith, L.H. Identification and Analysis of Organic Pollutants in Air. (1984). Ann Arbor Science/Butterworth, Boston, MA. 353370.Google Scholar
Mollenhauer, G., MCManus, J.F., Benthien, A., Müller, P.J., and Eglinton, T.I. Rapid lateral particle transport in the Argentine Basin: molecular 14C and 230Thxs evidence. Deep-Sea Research I 53, (2006). 12241243.Google Scholar
Mollenhauer, G., Inthorn, M., Vogt, T., Zabel, M., Sinninghe Damsté, J.S., and Eglinton, T.I. Aging of marine organic matter during cross-shelf lateral transport in the Benguela upwelling system revealed by compound-specific radiocarbon dating. Geochemistry, Geophysics, Geosystems (2007). Q09004 http://dx.doi.org/10.1029/2007GC001603 Google Scholar
Mollenhauer, G., Eglinton, T.I., Hopmans, E.C., and Sinninghe Damsté, J.S. A radiocarbon-based assessment of the preservation characteristics of crenarchaeol and alkenones from continental margin sediments. Organic Geochemistry 39, (2008). 10391045.Google Scholar
Ohkouchi, N., Eglinton, T.I., Keigwin, L.D., and Hayes, J.M. Spatial and temporal offsets between proxy records in a sediment drift. Science 298, (2002). 12241227.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, J., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.M., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M. Climate and atmospheric history of the past 420.000 years from the Vostok ice core, Antarctica. Nature 399, (1999). 429436.Google Scholar
Poynter, J.G., Farrimond, P., Brassell, S.C., and Eglinton, G. Aeolian-derived higher-plant lipids in the marine sedimentary record: Links with paleoclimate. Leinen, M., and Sarnthein, M. Palaeoclimatology and Palaeometeorology: Modern and Past Patterns of Global Atmosphere Transport. (1989). Kluwer, 435462.Google Scholar
Prahl, F.G., and Wakeham, S.G. Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature 330, (1987). 367369.Google Scholar
Prahl, F.G., Muehlhausen, L.A., and Zahnle, D.L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta 52, (1988). 23032310.Google Scholar
Rintoul, S.R., Hughes, C., and Olbers, D. The Antarctic circumpolar current system. Sieder, G., Church, J., and Gould, J. Ocean Circulation and Climate. (2001). Academic Press, Google Scholar
Rühlemann, C., and Butzin, M. Alkenone temperature anomalies in the Brazil–Malvinas Confluence area caused by lateral advection of suspended particulate material. Geochemistry, Geophysics, Geosystems 7, (2006). Q10015 http://dx.doi.org/10.1029/2006GC001251 Google Scholar
Sachs, J.P., and Anderson, R.F. Fidelity of alkenone paleotemperatures in southern Cape Basin sediment drifts. Paleoceanography 18, (2003). 1082 http://dx.doi.org/10.1029/2002PA000862 Google Scholar
Salvignac, M.E., (1998). Variabilité hydrologique et climatique de l'Océan Austral (secteur indien) au cours du Quaternaire Terminal. Essai de corrélations inter-hémisphériques, . PhD manuscript, University of Bordeaux 1, pp. 308.Google Scholar
Schouten, S., Hopmans, E.C., Schefuβ, E., and Sinninghe Damsté, J.S. Distributional variations in marine crenarchaeotal membrane lipids: a new organic proxy for reconstructing ancient sea water temperatures?. Earth and Planetary Science Letters 204, (2002). 265274.Google Scholar
Schouten, S., Huguet, C., Hopmans, E.C., and Sinninghe Damsté, J.S. Improved analytical methodology of the TEX86 paleothermometry by high performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal. Chem. 79, (2007). 29402944.Google Scholar
Schrader, H.J., and Gersonde, R. Diatoms and Silicoflagellates. Micropaleontological counting methods and techniques – An exercise on an eight metres section of the Lower Pliocene of Capo Rossello. Zachariasse, W.J., Riedel, W.R., Sanfilippo, A. et al. Utrecht Micropaleontological Bulletin 17, (1978). 129176.Google Scholar
Sicre, M.A., Labeyrie, L., Ezat, U., Duprat, J., Turon, J.L., Schmidt, S., Mazaud, A., and Michel, E. Mid-latitude Southern Indian Ocean response to Northern Hemisphere Heinrich events. Earth and Planetary Science Letters 240, (2005). 724731.Google Scholar
Simoneit, B.R.T., Cardoso, J.N., and Robinson, N. An assessment of terrestrial higher molecular weight lipid compounds in aerosol particulate matter over the South Atlantic from about 30–70°S. Chemosphere 23, (1991). 447465.CrossRefGoogle Scholar
Walsh, E.M., Ingalls, A.E., and Keil, R.G. Sources and transport of terrestrial organic matter in Vancouver Island fjords and the Vancouver–Washington Margin: a multiproxy approach using d13Corg, lignin phenols, and the ether lipid BIT index. Limnology and Oceanography 53, (2008). 10541063.Google Scholar
Weijers, J.W.H., Schouten, S., Spaargaren, O.C., and Sinninghe Damsté, S.J. Occurrence and distribution of tetraether membrane in soils: implications for the use of the BIT index and the TEX86 SST proxy. Organic Geochemistry 37, (2006). 16801693.Google Scholar